## ATLANTIC STATES MARINE FISHERIES COMMISSION

## REVIEW OF THE INTERSTATE FISHERY MANAGEMENT PLAN <br> FOR WEAKFISH <br> (Cynoscion regalis)

## 2017 FISHING YEAR



Prepared by the Plan Review Team

## Tables of Contents

I. Status of the Fishery Management Plan ..... 1
II. Status of the Stock ..... 2
III. Status of the Fishery ..... 2
IV. Status of Assessment Advice ..... 4
V. Status of Research and Monitoring ..... 5
VI. Status of Management Measures and Issues ..... 5
VII. Implementation of FMP Compliance Requirements for 2016 ..... 7
VIII. Recommendations of the Plan Review Team ..... 8
IX. References ..... 9
X. Tables. ..... 12
XI. Figures ..... 12

## I. Status of the Fishery Management Plan

The Atlantic States Marine Fisheries Commission (Commission) adopted its first Fishery Management Plan (FMP) for Weakfish in 1985. Amendment 1 to the FMP (1992) unsuccessfully aimed to improve the status of Weakfish. Amendment 2 (1995) resulted in some improvement to the stock, but several signs indicated that further improvement was necessary. Thus, Amendment 3 (1996) was implemented to increase the sustainability of the fishery. Addendum I to Amendment 3 was approved in 2000 in order to extend the management program until the next amendment was implemented.

Amendment 4, approved in 2002, strives to establish two goals. One is the utilization of interstate management so that Atlantic coastal weakfish recover to healthy levels that will maintain commercial and recreational harvest consistent with a self-sustaining spawning stock. The second goal is to provide for restoration and maintenance of essential habitat (ASMFC 2002). The management objectives are to:

1) establish and maintain an overfishing definition which includes target and threshold fishing mortality rates and a threshold spawning stock biomass in order to prevent overfishing and to maintain a sustainable weakfish population;
2) restore the weakfish age and size structure to that necessary for the restoration of the fishery;
3) return weakfish to their previous geographic range;
4) achieve compatible and equitable management measures among jurisdictions throughout the fishery management unit, including states' waters and the federal EEZ;
5) promote cooperative interstate research, monitoring, and law enforcement necessary to support management of weakfish;
6) promote identification and conservation of habitat essential for the long term stability in the weakfish population; and
7) establish standards and procedures for both the implementation of Amendment 4 and for determination of states' compliance with provisions of the management plan.

Amendment 4 established target and threshold fishing mortality rates and a threshold spawning stock biomass level to determine overfishing and overfished stock status. The amendment requires states to implement recreational and commercial management measures to achieve annual fishing mortality targets. Some management measures are specified (e.g., minimum size limit, minimum mesh size, bycatch limit), while the Amendment provides the states flexibility in implementing other regulations (e.g., trip limits, area or season closures). States may request implementation of alternative management plans with conservationally equivalent measures. States deemed to have insignificant landings were exempt from the recreational and commercial requirements, with the exception of the bycatch reduction device requirements.

The Commission adopted Addendum I to Amendment 4 (2005) to replace the biological sampling program in Section 3.0 of Amendment 4. In response to a significant decline in stock abundance and increasing total mortality since 1999, the Commission approved Addendum II to Amendment 4 (2007) to reduce the recreational creel limit and commercial bycatch limit, and set landings levels that when met will trigger a re-evaluation of management measures. Addendum III to

Amendment 4 (2007) altered the bycatch reduction device certification requirements in Section 4.2.8 of Amendment 4 for consistency with the South Atlantic Fishery Management Council's Shrimp FMP. The Commission approved Addendum IV to Amendment 4 in 2009 to respond to the results of the 2009 benchmark stock assessment (additional information is provided in Section VI. Status of Management Measures and Issues).

Weakfish are managed under this plan as a single stock throughout their coastal range. All Atlantic coast states from Massachusetts through Florida and the Potomac River Fisheries Commission have a declared interest in weakfish, as do the US Fish and Wildlife Service (FWS) and National Marine Fisheries Service (NMFS). See Table 1 for a summary of state-by-state regulations in 2015.

## II. Status of the Stock

According to the last stock assessment, completed in 2016, the weakfish stock is depleted and overfishing is not occurring (ASMFC 2016). While overfishing has not occurred in recent years, harvest was reduced by an estimated $60 \%$ in Addendum IV to reduce additional mortality from fishing and poise the stock for a quicker recovery should natural mortality decline.

Between 1986 and 1993, spawning stock biomass (SSB) declined drastically from 48.5 million pounds (the time series maximum) to 16.0 million pounds (Figure 1). Overfishing was the main cause of this decline, with fishing mortality (F) accounting for about 90\% of total mortality (fishing plus natural mortality) during the period (Figure 1). With the implementation of management measures in the early to mid-1990s, F declined to 0.60 in 1996 and biomass responded favorably by increasing to a peak of 38.1 million pounds in 1997 (Figure 1). Despite low and declining harvests since the early 2000s, SSB continued to decline, reaching a time-series low of 4.2 million pounds in 2009. However, the contribution of fishing mortality to total mortality was substantially reduced during this period; from 2001-2010, 60-75\% of total mortality is attributed to fishing mortality. After the 2009 stock assessment ( $48^{\text {th }}$ SAW), harvest quotas were reduced, further reducing the contribution of fishing mortality to less than $25 \%$ of total mortality from 2011-2014. SSB increased slightly at the end of the assessment time series, but further monitoring is necessary to determine whether this increase is sustainable. Conversely, natural mortality has risen substantially since the mid-1990s (Figure 1). Annual natural mortality estimates did not exceed 0.17 from 1982-1997 but had an average of 0.93 from 2007-2014. Factors such as predation, competition, and changes in the environment are believed to be having a stronger influence on recent weakfish stock dynamics than fishing mortality.

[^0]At 602,713 pounds in 2017, the total coastwide landings of weakfish have increased from 2016 ( 380,878 pounds) and are below the previous ten-year (2007-2016) average of 818,764 pounds. The commercial fishery ( $166,671 \mathrm{lbs}$ ) accounted for $28 \%$ of the total 2017 landings, and the recreational fishery (436,042 lbs) for 72\% (Table 2).

## Commercial Fishery

Commercial data are cooperatively collected and compiled by the Atlantic Coastal Cooperative Statistics Program (ACCSP) and state fishery agencies from state mandated trip-tickets, landing weigh-out reports from seafood dealers, federal logbooks, shipboard and portside interviews, and biological sampling of catches. In this report, commercial landings from 2016 and earlier are from ACCSP and landings from 2017 are from state compliance reports, unless otherwise stated (see notes for Table 3).

Between 1982 and 2017, coastwide commercial weakfish landings have ranged from the high of 21.1 million pounds in 1986 to the low of 132,261 pounds in 2011 (Figure 3). Commercial landings have generally declined throughout the time series. Landings in 2017 were the third-lowest on record at 166,671 pounds, and decreased from 176,527 pounds in 2016. North Carolina (51\%), New York (17\%) and Virginia (16\%) landed the largest shares of the 2017 coastwide commercial weakfish harvest (Table 3).

The dominant commercial gears were gill nets (about 59\% of commercial landings). There has been a shift in the dominant source of landings from trawls in the 1950s-1980s to gill nets in the 1990 s-present. The majority of commercial landings tend to occur in the fall and winter months, presumably as the fish congregate to migrate to over-wintering grounds in the South Atlantic (Hogarth et al. 1995).

## Recreational Fishery

Recreational catch statistics are collected by the NMFS. Effort data are collected through telephone interviews. Catch expansions are based on angler interviews and biological sampling conducted by trained interviewers stationed at fishing access sites. Recreational data from 2016 and earlier in this report are from the NMFS Fisheries Statistics Division queried from the Marine Recreational Information Program (MRIP; 2018), except as noted in Section VI of this report for Florida's estimates. Some states also monitor and report recreational landings through their own sampling and estimation efforts. Recreational landings for 2017 are calculated from landings reported in state compliance reports.

Since 1982, coastwide recreational landings have ranged from the high of 20 million pounds in 1987 to the low of 102,754 pounds in 2011 (Figure 3). Landings averaged 13.7 million pounds from 1982-1988, before falling to between one and nine million pounds from 1989-2008. In 2009, recreational landings dropped below one million pounds. Landings have averaged 360 thousand pounds from 2013-2017, and are estimated at 436,042 pounds (276,140 fish) in 2017 (Tables 4 and 5). The number of fish released alive by anglers has remained above 1 million fish from 1991 through the present, except for 2013 (Figure 4). In 2017, 1.5 million fish were released (Table 6).

In 2010, all states implemented a one fish bag limit, which impacted landings and discards from that point on.

New Jersey anglers regularly harvested the most recreational weakfish by pounds along the coast until 2009. In the 1980s and 1990s, anglers in Delaware, Maryland, and Virginia often took the next largest shares of the recreational total amount. In the 2000s, New Jersey anglers led in the harvest, whereas anglers in Virginia and North Carolina tended to take the second and third largest amounts (Tables 4 and 5). However, since 2009, New Jersey and North Carolina have switched off in harvesting the largest recreational proportions, with the next greatest proportions coming from Virginia or South Carolina. New Jersey harvested the greatest proportion in 2017, with 225,225 pounds ( $52 \%$ of recreational harvest).

The size of fish sampled to provide the MRIP weight estimates has historically varied in a latitudinal fashion, with larger fish caught in the north and smaller fish caught in the south. The mean weight per fish sampled throughout the recreational time series (1982-2016) is less than 1.5 pounds for all states from Florida through Maryland and over 1.5 pounds for all states north of Maryland. In 2017, the mean weights for fish caught in New Jersey, Delaware, North Carolina, and South Carolina ( $2.86,1.75,1.08$, and 1.28 lbs , respectively) were greater than each state's time series mean, and the mean weights for fish caught in Massachusetts, New York, Maryland, Virginia, and the east coast of Florida ( $1.65,1.27,0.65,1.09$, and 0.66 lbs , respectively) were less than each state's time series mean.

The recreational fishery catches weakfish using live or cut bait, jigging, trolling, and chumming. The majority of recreationally harvested weakfish are caught in state waters ( $95 \%$ in 2017 by pounds).

## IV. Status of Assessment Advice

The 2016 assessment was completed by the ASMFC Weakfish Stock Assessment Subcommittee (SAS) (ASMFC 2016) and peer reviewed by the ASMFC Weakfish Stock Assessment Review Panel (ASMFC 2016). The assessment includes fishery data and survey indices through 2014.

As a result of this assessment, the Weakfish TC recommends new $Z$ and SSB reference points along with a two-stage control rule for evaluating weakfish stock status and management response.

Under conditions of time-varying natural mortality, there is no long-term stable equilibrium population size, so an SSB target is not informative for management. The Weakfish TC recommends an SSB threshold of $\mathrm{SSB}_{30 \%}=6,880 \mathrm{MT}$ that is equivalent to $30 \%$ of the projected SSB under average natural mortality and no fishing. When SSB is below that threshold, the stock is considered depleted.

SSB in 2014 was 2,548 MT, below the SSB threshold, indicating the stock is depleted (Table 9.2.1, Figure 9.2.1). SSB has been below the threshold for the last 13 years.

The TC recommends the use of total mortality benchmarks to prevent an increase in fishing pressure when $F$ is low but $M$ is high. When $Z$ is below the $Z$ target, $F$ reference points can be used to assess overfishing status.
$Z$ in 2014 was 1.11, above the $Z$ target, but below the $Z$ threshold, indicating total mortality is still high but within acceptable limits (Table 9.2.1, Figure 9.2.2). Z was above the threshold from 2002-2013.

## V. Status of Research and Monitoring

## Fishery-Independent Data

Young-of-year indices of relative abundance are provided by Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Delaware, Maryland, Virginia, North Carolina, South Carolina, and Florida. Massachusetts, Connecticut, New Jersey, Delaware, North Carolina, Georgia, and Florida provide age- 0+ or 1+ indices of relative abundance. The Northeast Fisheries Science Center Groundfish Trawl Survey also produces an age-structured index for the MidAtlantic coast, while the Southeast Area Monitoring and Assessment Program (SEAMAP) survey produces another index for the South Atlantic Coast. The Northeast Area Monitoring and Assessment Program (NEAMAP) began spring and fall surveys between Martha's Vineyard and Cape Hatteras in the fall of 2007, and provided an Age 1+ index which is included in the 2016 assessment. Stomach content analysis was also done to assess food habit changes and investigate the possible decrease in preferred food availability as a driver of natural mortality, however results were inconclusive. The Chesapeake Bay Multispecies Monitoring and Assessment Program (ChesMMAP), which began in 2002, collects data on relative abundance, length, weight, age, sex, and trophic interactions in the Bay. See Table 7 for the indices provided in the 2018 compliance reports. While only the most recent years of data are shown, full data sets for each survey are available upon request to the state or Commission.

## Fishery-Dependent Data

The coastal states and the NMFS collect data on commercial and recreational landings. Addendum I to Amendment 4 requires the collection of otoliths and lengths to characterize the catch; the number of samples required is based on the magnitude of each state's fisheries. Each spring, the states are required to submit biological sampling plans, and each fall, through the compliance reports, the states are required to provide the actual sampling levels completed. See Section VII for more information.

## VI. Status of Management Measures and Issues

## Fishery Management Plan

Addendum IV to Amendment 4 was approved in November 2009, and was implemented in May 2010. In response to the 2009 stock assessment results, the addendum implements more appropriate biological reference points in response to recent stock dynamics and reduces harvest while attempting to minimize unnecessary bycatch waste. Addendum IV requires all states in the management unit (including those that are de minimis) to implement a recreational creel limit no greater than 1 fish, commercial trip and bycatch limits no greater than 100 pounds, and a
finfish trawl fishery allowance for up to 100 undersized fish. The addendum adopted percentage based biological reference points with an overfished/depleted threshold of 20\% SSB and a target of $30 \%$ SSB. Results of the 2016 assessment support continued use of these reference points. The biological sampling requirements under Addendum I are unchanged, and all regulations previously enacted to protect weakfish and reduce bycatch are to remain effective.

No additional amendments or addenda are under development.

## Florida Management Area and Landings Data

In November 2009, the Management Board approved a proposal from Florida to reduce the state's weakfish management area to a small area in northeast Florida where pure weakfish are known to occur based on genetics data. The revision is intended to address the misidentification of weakfish, sand seatrout, silver seatrout, and their hybrids, and the consequential law enforcement issue. Inside the newly established weakfish management area (St. Mary's River only), any fish that resembles weakfish will be considered weakfish for enforcement purposes, both for commercial and recreational limits. Outside the weakfish management area, all fish that resemble weakfish will be considered sand seatrout.

As a result of the approved proposal, the commercial and recreational landings data provided in Florida's 2018 compliance report represent the best estimate of pure weakfish landings in the state. Commercial landings data from Florida's trip ticket program and recreational landings from the NMFS's Marine Recreational Fisheries Statistics Survey include only weakfish landed in Nassau and Duval counties, as revised on the basis of the genome proportions within the Cynoscion-complex found in the counties ( $48 \%$ weakfish in Nassau County and $17 \%$ in Duval County). The landings, tables, and figures in this report use the landings as reported by Florida.

## De Minimis Status

Amendment 4 permits states to request de minimis status if, for the last two years, their combined average commercial and recreational landings (by weight) constitute less than $1 \%$ of the coastwide commercial and recreational landings for the same two year period. The de minimis threshold for the 2017 fishing year, calculated with 2016 and 2017 harvest data, is 5,096 pounds.

Three states requested de minimis status in their 2016 compliance reports: Massachusetts, Connecticut, and Florida. Massachusetts and Florida qualify for de minimis status (Massachusetts $0.66 \%$ and Florida $0.34 \%$ ). Connecticut's 2016-2017 average landings are $1.07 \%$ of the coastwide total, exceeding the de minimis threshold by $0.07 \%$.

## Addendum II Management Triggers

In 2010, the recreational and commercial management measures in Addendum IV replaced those in Addendum II. However, the Plan Review Team (PRT) will continue to include an evaluation of the two management triggers as they provide perspective on the magnitude of fishery landings (but hitting a trigger will not require Board reconsideration of the management measures).

Addendum II established two management triggers that would require the Board to consider modifying management measures if reached. First, commercial management measures are to be re-evaluated if coastwide commercial landings exceed $80 \%$ of the mean commercial landings from 2000-2004, or 2.99 million pounds. Second, commercial and recreational management measures are to be re-evaluated if any single state's landings exceed its five-year mean by more than $25 \%$ in any single year.

The 2016 coastwide commercial landings are 166,671 pounds, thus the first trigger has not been exceeded. The second trigger was met in Massachusetts, New Jersey, Georgia, and Florida because their total estimated landings in 2017 were $129 \%, 81 \%, 282 \%$, and $46 \%$ greater than their average total landings from 2013-2017 (Table 8). Massachusetts and Florida landings, while relatively high, each constitute less than $1 \%$ of total coastwide landings. Thus, the PRT does not find the 2017 harvests for these states to be a cause for concern.

New Jersey's increase in landings follows three of their five lowest harvests on record, and is their third-highest harvest since 2010. The recent trend of landings to shift north or south between New Jersey and North Carolina may be indicative of environmental components impacting annual availability by location.

Georgia's 2017 harvest also follows one of their lowest periods of harvest, with a 2013-2016 average of 3,675 pounds. Sporadic increases above 10 thousand pounds have occurred in the past for Georgia, but have never lasted more than three years and have been interspersed among harvests typically less than 7 thousand pounds. The most recent harvest above 10 thousand pounds was in 2009 (14,449 pounds).

The PRT does not recommend management action for these New Jersey and Georgia at this time, but does recommend monitoring harvests in these states next year to see if high levels are sustained. Preliminary 2018 data for both states indicate more typical harvests.

## VII. Implementation of FMP Compliance Requirements for 2017

Mandatory compliance elements for 2017 were provided by Amendment 4 and its four addenda.

## Regulatory Requirements

The management program includes regulatory requirements for non de minimis states as follows:

- Recreational management measures including minimum size limits and a maximum creel limit of one fish(see Addenda II and IV to Amendment 4)
- Commercial management measures including minimum size limits, minimum mesh size limits, landings limits, trip limits, bycatch limits, closed seasons and areas, and bycatch reduction device requirements (see Section 4.2 of Amendment 4, and Addendum IV)

The PRT finds all states to have implemented the plan's compliance requirements.

See Table 1 for a summary of state commercial and recreational regulations in 2015.

## Monitoring Requirements

Addendum I implemented monitoring requirements for non de minimis states as follows:

- Maintenance of at least the 2005 level of recreational sampling of individual lengths through the Marine Recreational Fisheries Statistics Survey;
- Collection of six individual fish lengths for each metric ton of weakfish landed commercially;
- Collection of three individual fish ages for each metric ton of total weakfish landed, with a maximum of 1000 ages annually per state [Samples may come from commercial and/or recreational fishery as long as they come from the same general area (inshore versus offshore) that those fisheries are prosecuted in.].

Table 9 provides the otolith and length collection requirements for 2017. These are based on the best available 2016 landings data provided to the Commission by the ACCSP, NMFS, and the states. To accommodate the MRIP transition to the FES, requirements listed in Table 9 are based on recreational estimates made with the previously used Coastal Household Telephone Survey (CHTS). Future sampling efforts (2019 and beyond) should be based on recreational harvests estimated using the FES. Table 9 also provides the number of otoliths and lengths collected by the states in 2017. All states except New York met the biological sampling requirements in 2017, as reported in state compliance reports. New York collected an adequate number of ages but collected 36 lengths less than their required 84 lengths. This is the second consecutive year that New York has not fulfilled sampling requirements for commercial lengths. Although New York did not meet their sampling requirements, the PRT recognizes the difficulty in acquiring weakfish samples and has no reason to believe that this state did not make a good faith effort to fulfill the requirements of the FMP.

## VIII. Recommendations of the Plan Review Team

## Management Recommendations

- That the Board approve the de minimis requests from Massachusetts, Connecticut, and Florida.
- That the Board consider for management the use of biological reference points from the 2016 stock assessment.
- That the Board consider updating management triggers established in Addendum II to Amendment 4.
- That the Board clarify the use of fishery-independent samples in fulfilling biological sampling requirements as set forth in Addendum I to Amendment 4.


## Research Recommendations

Fishery-Dependent Priorities
High

- Increase observer coverage to identify the magnitude of discards for all commercial gear types from both directed and non-directed fisheries. ${ }^{1}$
Moderate

[^1]- Continue studies on temperature, size, and depth specific recreational hook and release mortality rates, particularly catches from warm, deep waters. Investigate methods to increase survival of released fish.
- Continue studies on mesh size selectivity, particularly trawl fisheries. ${ }^{2}$
- Improve methods to estimate commercial bycatch. Refine estimates of discard mortality based on factors such as distance from shore and other geographical differences for all sizes including below minimum size.


## Low

- Determine the onshore versus offshore components of the weakfish fishery.
- Collect catch and effort data including size and age composition of the catch, determine stock mortality throughout the range, and define gear characteristics. In particular, increase length frequency sampling in fisheries from Maryland and further north.
- Develop latitudinal, seasonal, and gear-specific age-length keys coast wide. Increase sample sizes for gear specific keys.


## Modeling / Quantitative Priorities

## High

- Evaluate predation of weakfish with a more advanced multispecies model (e.g., the ASMFC MSVPA or Ecopath with Ecosim); consider an expanded suite of predators (e.g., marine mammals) and include weakfish as predator and prey.
- Develop a bioenergetics model that encompasses a broader range of ages than Hartman and Brandt (1995) and use it to evaluate diet and growth data.


## Life History, Biological, and Habitat Priorities

## High

- Develop a coastwide tagging program to identify stocks and determine migration, stock mixing, and characteristics of stocks in over wintering grounds. Determine the relationship between migratory aspects and the observed trend in weight at age. ${ }^{3}$
- Estimate weakfish mortality through independent approaches (e.g., alternative models, tagging) to corroborate trends in mortality from the assessment model.
- Determine the impact of scientific monitoring surveys on juvenile weakfish mortality. Calculate the resulting impact on adult stock size.
- Monitor weakfish diets over a broad regional and spatial scale, with emphasis on new studies within estuaries.
- Continue to investigate the geographical extent of weakfish hybridization.

Moderate

[^2]- Identify and delineate weakfish spawning habitat locations and environmental preferences to quantify spawning habitat.
- Compile data on larval and juvenile distribution from existing databases to obtain indications of spawning and nursery habitat location and extant.
- Examine geographical and temporal differences in growth rate (length and weight at age).
- Determine the impact of power plants and other water intakes on larval, post larval, and juvenile weakfish mortality in spawning and nursery areas. Calculate the resulting impact on adult stock size. ${ }^{4}$
- Monitor predation on weakfish from bird, fish, and marine mammal species.


## Management, Law Enforcement, and Socioeconomic Priorities Moderate

- Assemble socioeconomic data as it becomes available from ACCSP.

Low

- Define restrictions necessary for implementation of projects in spawning and over wintering areas and develop policies on limiting development projects seasonally or spatially.

[^3]
## IX. References

Atlantic States Marine Fisheries Commission (ASMFC). 2002. Amendment 4 to the Interstate Fishery management Plan for Weakfish. Washington (DC): ASMFC Fishery Management Report No. 29.84 p.
ASMFC. 2016. Weakfish Stock Assessment and Peer Review Report. Atlantic States Marine Fisheries Commission, Stock Assessment Report, 435 p.
Hogarth WT, Meyer T, Perra P, Shaefer RH. 1995. Final environmental impact statement and draft regulatory impact review for a regulatory amendment for the Atlantic Coast weakfish fishery in the Exclusive Economic Zone (EEZ). Silver Spring (MD): US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Fisheries Conservation and Management, Recreational and Interjurisdictional Fisheries Division. 84 p.
National Marine Fisheries Service (NMFS). 2009. Personal communication with the Fisheries Statistics Division. See: http://www.st.nmfs.gov/st1/
Northeast Fisheries Science Center (NEFSC). 2009a. 48th Northeast Regional Stock Assessment Workshop (48th SAW) Assessment Summary Report. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 09-10; 50 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026, or online at http://www.nefsc.noaa.gov/nefsc/saw/

Northeast Fisheries Science Center. 2009b. 48th Northeast Regional Stock Assessment Workshop (48th SAW) Assessment Report. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 0915; 834 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026, or online at http://www.nefsc.noaa.gov/nefsc/saw/

Sullivan PJ, Bell M, Gibson J, Kupschus S. 2009. Summary Report of the 48 ${ }^{\text {th }}$ Northeast Regional Stock Assessment Review Committee (SARC 48). Report prepared for the Northeast Regional Stock Assessment Workshop. 39 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026, or online at http://www.nefsc.noaa.gov/nefsc/saw/

## X. Tables

Table 1. Summary of state regulations for weakfish in 2017.

| State | Commercial | Recreational | Implementation Date |
| :---: | :---: | :---: | :---: |
| MA | 16", open 1/1-12/31, 100 lb possession limit. | 16", 1 fish | June 2010 |
| RI | 16 "; open 6/1-6/30 \& 8/7-11/8, 100 lb possession limit. Other times of year: 100 pound bycatch limit with at least an equal poundage of other species as weakfish. Trawl codend mesh size $>=4.5^{\prime \prime}$ diamond or $4.0^{\prime \prime}$ square. | 16", 1 fish | April 28, 2010 |
| CT | 16 "; open 1/1-12/31, 100 lb possession limit. | 16", 1 fish | April 25, 2010 |
| NY | 16" (12" dressed \& 10" filleted); Hook and line open 4/1-6/24 \& 8/28-11/15; 0 lb bycatch limit. All other gears open 4/1$6 / 24$ and $8 / 28-11 / 15 ; 100 \mathrm{lb}$ bycatch limit. | 16" (12" dressed, 10" fillet), 1 fish | By May 1, 2010 |
| NJ | Gill net: 13 "; open 1/1-5/20 \& 9/3-10/19 \& 10/27-12/31, 100 Ib possession limit; mesh $\geq 3.25$ " stretched except 2.75-3.25" allowed within 2 nm for permitted fishermen doing monthly reporting. Otter trawl: 13"; open 1/1-7/31 \& 10/13-12/31, 100 lb possession limit; mesh $\geq 3.75$ " diamond or 3.375 square. Pound net: 13 "; open $1 / 1 /-6 / 6 \& 7 / 1-12 / 31,100 \mathrm{lb}$ possession limit. 100 lb bycatch limit \& $50 \%$ rule. Hook \& line: 13", <br> 1 fish, open 1/1-12/31. | 13", 1 fish | March 25, 2010 |
| DE | Gill net: 12 "; only nets with stretch mesh $\geq 3.125$ " allowed in water 4/1-6/30, none permitted weekends and legal holidays 5/10-9/30, 100 lb possession limit. Drift gill net: open 1/112/31 except 34 specified days of gear out of water in May and June. Anchor gill net: open 1/1-5/9 and 10/1-12/31, otherwise gear out of water. Hook \& line: 13"; 100 lb possession limit 4 days/week during 5/1-10/31, 1 fish creel limit all other times. | 13", 1 fish | April 11, 2010 |
| MD | 12 ". Ocean all gears: 100 lb bycatch limit \& $50 \%$ rule. Chesapeake Bay hook \& line: open 8/1-9/30, 50 lb possession limit, 0 lb bycatch. Chesapeake Bay all other gears: 50 lb bycatch limit \& $50 \%$ rule. Gillnet: mesh $\geq 3.0$ " stretched. Trawl: mesh $\geq 3.375^{\prime \prime}$ square or 3.75 " diamond. | 13", 1 fish | June 28, 2010 |
| PRFC | 12 "; open 7/28-12/31, 50 lb possession limit; 50 lb bycatch limit \& $50 \%$ rule for certified pound nets with approved cull panels, and 0 lb bycatch for all other gears. Pound net: limited entry. | 12", 1 fish | January 1, 2010 |


| VA | Gill net: 12 "; open $3 / 16-5 / 13$ \& 10/21-12/30, 100 lb possession limit. Pound net: no minimum size; limited entry; open 4/1-4/30 \& 5/23-9/12 unless exempted by license forfeit, 100 lb possession limit. Haul seine: no minimum size; open 4/16-6/10 \& 8/21-9/24, 100 lb possession limit. Out of state trawl: 12" except 100 undersized fish allowed; open 4/1$9 / 25,100 \mathrm{lb}$ possession limit; codend mesh $\geq 3.0$ ". Hook \& line: $12^{\prime \prime}$; open $1 / 1-12 / 31,100 \mathrm{lb}$ possession limit. 100 lb bycatch limit (per vessel), $50 \%$ rule for all gears during closed seasons. | 12", 1 fish | May 1, 2010 |
| :---: | :---: | :---: | :---: |
| NC | 12", except 10" for long haul seines \& pound nets in internal waters 4/1-11/15; open 1/1-12/31, 100 lbs trip limit. Gill net: mesh $\geq 2.875$ " stretch. Gill nets and flynets that do not meet mesh requirements can only take weakfish as bycatch provided the weight of weakfish doesn't exceed $50 \%$ of catch up to $100 \mathrm{lbs}, 100 \mathrm{lb}$ limit in shrimp or crab trawl. BRDs in shrimp trawls. | 12", 1 fish | August 20, 2010 |
| SC | 12", 1 fish. BRDs in shrimp trawls. | 12", 1 fish | July 1, 2010 |
| GA | 13", 1 fish. BRDs in shrimp trawls. | 13", 1 fish | June 3, 2010 |
| FL | $12 \mathrm{C}, 100 \mathrm{lb}$ possession limit. BRDs in shrimp trawls. | 12", 1 fish | July 27, 2010 |

Table 2. Commercial and recreational Atlantic coast weakfish landings from 2000 to 2017 (see Tables 3 and 4 for source information and state-specific landings).

| Year | Recreational Landings <br> (Ibs) | Commercial Landings <br> (Ibs) | Total Landings <br> (lbs) | \% Com |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 0 0}$ | $8,393,984$ | $5,062,705$ | $13,456,689$ | $38 \%$ |
| 2001 | $4,687,016$ | $4,802,221$ | $9,489,237$ | $51 \%$ |
| 2002 | $4,316,228$ | $4,594,956$ | $8,911,184$ | $52 \%$ |
| 2003 | $1,946,795$ | $1,999,040$ | $3,945,835$ | $51 \%$ |
| 2004 | $2,223,528$ | $1,538,517$ | $3,762,045$ | $41 \%$ |
| 2005 | $2,580,901$ | $1,264,102$ | $3,845,003$ | $33 \%$ |
| 2006 | $1,814,676$ | $1,081,396$ | $2,896,072$ | $37 \%$ |
| 2007 | $1,202,671$ | 900,958 | $2,103,629$ | $43 \%$ |
| 2008 | $1,074,487$ | 456,793 | $1,531,280$ | $30 \%$ |
| 2009 | 429,684 | 372,985 | 802,669 | $46 \%$ |
| 2010 | 173,352 | 202,626 | 375,978 | $54 \%$ |
| 2011 | 102,754 | 132,261 | 235,015 | $56 \%$ |
| 2012 | 671,631 | 246,765 | 918,396 | $27 \%$ |
| 2013 | 466,930 | 343,899 | 810,829 | $42 \%$ |
| 2014 | 218,581 | 192,009 | 410,590 | $47 \%$ |
| 2015 | 451,266 | 142,609 | 593,875 | $24 \%$ |
| 2016 | 228,857 | 176,527 | 405,384 | $44 \%$ |
| 2017 | 436,042 | 166,671 | 602,713 | $28 \%$ |

Table 3. Commercial landings (pounds) of weakfish by state, 2000-2017 (Source: ACCSP for 2016 and earlier and state compliance reports for 2017, except as noted below). Starred values are confidential.

| Year | $\mathbf{M A}$ | $\mathbf{R I}$ | $\mathbf{C T}$ | $\mathbf{N Y}$ | $\mathbf{N J}$ | $\mathbf{D E}$ | $\mathbf{M D}$ | PRFC | VA | $\mathbf{N C}$ | SC | GA | FL | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 0 0}$ | 527 | 189,362 | 7,920 | 352,832 | $1,071,428$ | $*$ | 200,299 | 68,574 | $1,302,271$ | $1,869,044$ |  |  | 448 | $5,062,705$ |
| $\mathbf{2 0 0 1}$ | 231 | 109,568 | 6,774 | 578,797 | 837,550 | $*$ | 181,188 | 44,219 | $1,082,369$ | $1,960,324$ |  | $*$ | 1,201 | $4,802,221$ |
| $\mathbf{2 0 0 2}$ | 842 | 122,781 | 10,223 | 513,977 | 863,088 | $*$ | 108,318 | 57,818 | $1,089,323$ | $1,828,150$ | 42 |  | 394 | $4,594,956$ |
| $\mathbf{2 0 0 3}$ | 519 | 63,337 | $*$ | 144,416 | 340,269 | $*$ | 46,427 | 5,273 | 455,094 | 848,822 |  | $*$ | 288 | $1,999,040$ |
| $\mathbf{2 0 0 4}$ | 59 | 34,209 | 6,206 | 150,046 | 204,585 | 51,276 | 55,100 | 1,986 | 349,395 | 685,463 | $*$ | $*$ | 192 | $1,538,517$ |
| $\mathbf{2 0 0 5}$ | 2,840 | 41,558 | 6,118 | 90,238 | 208,232 | 70,669 | 35,527 | 1,004 | 385,584 | 421,779 |  | $*$ | 553 | $1,264,102$ |
| $\mathbf{2 0 0 6}$ | $*$ | 47,474 | 7,012 | 152,922 | 236,521 | 34,434 | 51,081 | 689 | 187,849 | 363,078 |  | $*$ | 337 | $1,081,396$ |
| $\mathbf{2 0 0 7}$ | $*$ | 20,586 | 1,910 | 86,723 | 164,506 | 24,579 | 22,284 | 20 | 403,873 | 175,589 |  | 888 | 900,958 |  |
| $\mathbf{2 0 0 8}$ | 73 | 9,703 | 1,024 | 42,621 | 57,013 | 11,186 | 6,364 | 74 | 165,223 | 162,516 |  | $*$ | 996 | 456,793 |
| $\mathbf{2 0 0 9}$ | $*$ | 6,286 | 506 | 101,561 | 30,196 | $*$ | 5,230 | 17 | 65,589 | 163,146 |  |  | 453 | 372,985 |
| $\mathbf{2 0 1 0}$ | 58 | 5,400 | 960 | 13,102 | 12,053 | $*$ | 2,930 | 80 | 61,651 | 106,319 |  | 7 | 73 | 202,626 |
| $\mathbf{2 0 1 1}$ | 615 | 5,766 | 2,105 | 17,136 | 13,324 | $*$ | 646 | 45 | 26,119 | 65,897 |  | $*$ | 608 | 132,261 |
| $\mathbf{2 0 1 2}$ | 616 | 17,908 | 4,723 | 63,119 | 19,291 | $*$ | 2,078 | 98 | 45,551 | 91,383 |  |  | 1,999 | 246,765 |
| $\mathbf{2 0 1 3}$ | 3,400 | 31,826 | 5,960 | 108,656 | 14,829 | $*$ | 3,344 | 24 | 54,607 | 120,188 |  | $*$ | 1,065 | 343,899 |
| $\mathbf{2 0 1 4}$ | 918 | 15,583 | 3,343 | 33,303 | 8,415 | $*$ | 2,126 | 10 | 22,508 | 105,246 |  |  | 557 | 192,009 |
| $\mathbf{2 0 1 5}$ | 473 | 6,327 | 1,666 | 24,238 | 9,655 | $*$ | 1,394 | 3 | 17,882 | 80,230 |  |  | 741 | 142,609 |
| $\mathbf{2 0 1 6}$ | 882 | 12,022 | 2,731 | 30,703 | 6,596 | $*$ | 914 |  | 42,419 | 79,640 | 0 | 0 | 621 | 176,527 |
| $\mathbf{2 0 1 7}$ | 2,175 | 17,243 | 3,956 | 27,731 | $*$ | 1,334 | 760 | 5 | 26,347 | 85,440 | 0 | 0 | 1,680 | 166,671 |

Notes: FL: state-reported landings (NMFS-reported landings limited to Nassau and Duval Counties and adjusted on the basis of the genome proportions of weakfish within the Cynoscion-complex in those counties' waters). VA: ACCSP-reported landings minus the PRFC-reported harvest landed in VA for 2016 and earlier; state-reported landings minus the PRFC-reported harvest landed in VA for 2017. PRFC: agency-reported landings (fish caught in Potomac River and landed in MD and VA). MD: ACCSP-reported landings minus the PRFC-reported harvest landed in MD for 2016 and earlier; state-reported landings minus the PRFC-reported harvest landed in MD for 2017.

Table 4. Recreational landings (pounds) of weakfish by state, 2000-2017 (Source: MRIP FES-calibrated estimates, except as noted below).

| Year | $\mathbf{M A}$ | $\mathbf{R I}$ | $\mathbf{C T}$ | $\mathbf{N Y}$ | $\mathbf{N J}$ | $\mathbf{D E}$ | $\mathbf{M D}$ | $\mathbf{V A}$ | $\mathbf{N C}$ | $\mathbf{S C}$ | $\mathbf{G A}$ | $\mathbf{F L}$ | $\mathbf{T o t a l}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 0 0}$ |  | 5,532 | 66,881 | 287,367 | $4,783,294$ | $1,116,710$ | $1,193,891$ | 732,768 | 179,599 | 12,931 | 12,068 | 2,943 | $8,393,984$ |
| $\mathbf{2 0 0 1}$ |  | 28,607 | 5,227 | 226,328 | $2,253,931$ | 269,108 | 925,019 | 645,708 | 325,447 |  | 6,319 | 1,322 | $4,687,016$ |
| $\mathbf{2 0 0 2}$ |  | 20,066 | 33,399 | 145,900 | $2,499,634$ | 437,650 | 393,128 | 515,434 | 215,402 | 51,424 | 2,614 | 1,577 | $4,316,228$ |
| $\mathbf{2 0 0 3}$ | 2,444 | 4,716 | 6,755 | 83,971 | 940,448 | 154,933 | 180,700 | 250,558 | 309,412 | 9,937 | 2,341 | 580 | $1,946,795$ |
| $\mathbf{2 0 0 4}$ |  | 0 | 0 | 116,570 | 509,032 | 11,164 | 53,937 | 791,329 | 428,627 | 295,781 | 16,151 | 937 | $2,223,528$ |
| $\mathbf{2 0 0 5}$ |  | 81,034 |  | 408 | $1,859,330$ | 58,485 | 50,713 | 47,412 | 281,710 | 187,324 | 12,920 | 1,565 | $2,580,901$ |
| $\mathbf{2 0 0 6}$ |  | 55,665 |  | 109,822 | $1,220,494$ | 46,096 | 768 | 69,978 | 302,775 | 3,959 | 3,599 | 1,520 | $1,814,676$ |
| $\mathbf{2 0 0 7}$ |  | 0 |  | 7,790 | 635,442 | 4,761 | 26,953 | 259,522 | 202,583 | 49,541 | 7,633 | 8,446 | $1,202,671$ |
| $\mathbf{2 0 0 8}$ |  |  |  | 100,594 | 658,574 | 11,123 | 3,543 | 46,378 | 209,470 | 33,200 | 10,408 | 1,197 | $1,074,487$ |
| $\mathbf{2 0 0 9}$ |  |  |  | 0 | 51,251 | 16,812 | 5,611 | 71,511 | 245,358 | 22,740 | 14,449 | 1,952 | 429,684 |
| $\mathbf{2 0 1 0}$ | 0 |  |  | 6,526 | 8,435 | 121 | 6,476 | 11,416 | 103,903 | 29,554 | 6,466 | 455 | 173,352 |
| $\mathbf{2 0 1 1}$ |  |  |  | 164 | 6,845 | 27 | 241 | 14,185 | 62,543 | 17,028 | 1,191 | 530 | 102,754 |
| $\mathbf{2 0 1 2}$ |  |  |  | 43,385 | 373,328 | 11,621 | 42,885 | 51,999 | 95,952 | 45,528 | 6,265 | 668 | 671,631 |
| $\mathbf{2 0 1 3}$ |  | 4,063 |  | 85,934 | 226,756 | 21,522 | 7,539 | 4,657 | 66,720 | 45,031 | 3,771 | 937 | 466,930 |
| $\mathbf{2 0 1 4}$ |  |  | 0 | 14,916 | 61,426 | 7,118 | 2,808 | 26,220 | 70,988 | 28,773 | 5,570 | 762 | 218,581 |
| $\mathbf{2 0 1 5}$ |  |  |  | 5,852 | 53,485 | 2,293 | 68,225 | 66,528 | 157,269 | 96,416 | 1,096 | 102 | 451,266 |
| $\mathbf{2 0 1 6}$ | 571 |  | 4,240 | 29,573 | 26,616 | 3,601 | 1,947 | 44,242 | 83,702 | 29,448 | 4,264 | 653 | 228,857 |
| $\mathbf{2 0 1 7}$ | 3,108 | 0 | 0 | 20,962 | 225,225 | 2,385 | 5,926 | 15,649 | 55,944 | 58,510 | 47,776 | 557 | 436,042 |

Notes: FL: state-reported landings 1983-present (NMFS-reported, FES-calibrated estimates limited to Nassau and Duval Counties and adjusted on the basis of the genome proportions of weakfish within the Cynoscion-complex found in those counties' waters.

Table 5. Recreational landings (numbers) of weakfish by state, 2000-2017 (Source: MRIP FES-calibrated estimates, except as noted below).

| Year | MA | $\mathbf{R I}$ | $\mathbf{C T}$ | $\mathbf{N Y}$ | $\mathbf{N J}$ | $\mathbf{D E}$ | $\mathbf{M D}$ | VA | $\mathbf{N C}$ | $\mathbf{S C}$ | $\mathbf{G A}$ | FL | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 0 0}$ |  | 3,086 | 14,699 | 82,577 | $1,597,735$ | 477,368 | 743,823 | 348,774 | 147,397 | 11,335 | 14,201 | 3,276 | $3,444,271$ |
| $\mathbf{2 0 0 1}$ |  | 5,393 | 765 | 46,457 | $1,271,032$ | 112,581 | 496,617 | 299,300 | 317,974 |  | 6,619 | 1,542 | $2,558,280$ |
| $\mathbf{2 0 0 2}$ |  | 4,134 | 4,312 | 46,635 | $1,012,299$ | 201,345 | 219,223 | 297,768 | 214,040 | 85,133 | 2,598 | 1,842 | $2,089,329$ |
| $\mathbf{2 0 0 3}$ | 318 | 540 | 774 | 17,012 | 305,550 | 44,322 | 175,974 | 112,349 | 291,168 | 12,760 | 2,923 | 774 | 964,464 |
| $\mathbf{2 0 0 4}$ |  | 0 | 0 | 31,764 | 320,078 | 10,496 | 39,093 | 462,198 | 395,268 | 539,811 | 13,178 | 1,114 | $1,813,000$ |
| $\mathbf{2 0 0 5}$ |  | 9,673 |  | 242 | $1,657,442$ | 36,263 | 59,293 | 68,103 | 297,605 | 273,231 | 11,505 | 1,539 | $2,414,896$ |
| $\mathbf{2 0 0 6}$ |  | 4,764 |  | 13,620 | $1,036,819$ | 18,683 | 763 | 55,368 | 343,092 | 5,936 | 5,137 | 1,578 | $1,485,760$ |
| $\mathbf{2 0 0 7}$ |  | 0 |  | 4,880 | 394,338 | 4,895 | 13,183 | 174,463 | 191,192 | 77,822 | 8,294 | 961 | 870,028 |
| $\mathbf{2 0 0 8}$ |  |  |  | 59,151 | 536,830 | 10,086 | 3,220 | 49,829 | 203,779 | 46,853 | 11,187 | 1,470 | 922,405 |
| $\mathbf{2 0 0 9}$ |  |  |  | 0 | 23,217 | 9,417 | 9,655 | 59,169 | 204,814 | 28,583 | 27,325 | 2,028 | 364,208 |
| $\mathbf{2 0 1 0}$ | 0 |  |  | 7,894 | 3,943 | 144 | 12,532 | 12,745 | 110,770 | 33,968 | 6,752 | 589 | 189,337 |
| $\mathbf{2 0 1 1}$ |  |  |  | 106 | 8,393 | 34 | 284 | 18,999 | 48,727 | 17,834 | 1,796 | 471 | 96,644 |
| $\mathbf{2 0 1 2}$ |  |  |  | 12,895 | 276,856 | 11,077 | 38,598 | 46,275 | 96,947 | 51,947 | 7,436 | 988 | 543,019 |
| $\mathbf{2 0 1 3}$ |  | 737 |  | 20,659 | 89,805 | 16,325 | 3,736 | 4,336 | 63,090 | 28,117 | 4,407 | 2,086 | 233,298 |
| $\mathbf{2 0 1 4}$ |  |  | 0 | 1,838 | 16,146 | 6,624 | 1,542 | 32,380 | 71,912 | 24,733 | 7,896 | 905 | 163,976 |
| $\mathbf{2 0 1 5}$ |  |  |  | 2,123 | 73,062 | 1,511 | 12,567 | 10,286 | 143,543 | 74,085 | 1,673 | 143 | 318,993 |
| $\mathbf{2 0 1 6}$ | 327 |  | 1,601 | 4,626 | 12,344 | 1,440 | 2,100 | 37,664 | 77,341 | 22,843 | 5,328 | 1,251 | 166,865 |
| $\mathbf{2 0 1 7}$ | 1,880 | 0 | 0 | 16,534 | 78,831 | 1,365 | 9,175 | 14,405 | 51,795 | 45,836 | 55,471 | 848 | 276,140 |

Notes: FL: state-reported landings 1983 -present (NMFS-reported, FES-calibrated estimates limited to Nassau and Duval Counties and adjusted on the basis of the genome proportions of weakfish within the Cynoscion-complex found in those counties' waters).

Table 6. Recreational releases (numbers) of weakfish by state, 2000-2016 (Source: MRIP FES-calibrated estimates, except as noted below).

| Year | $\mathbf{M A}$ | $\mathbf{R I}$ | $\mathbf{C T}$ | $\mathbf{N Y}$ | $\mathbf{N J}$ | $\mathbf{D E}$ | $\mathbf{M D}$ | $\mathbf{V A}$ | $\mathbf{N C}$ | $\mathbf{S C}$ | $\mathbf{G A}$ | FL | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 0 0}$ |  | 2,347 | 3,475 | 156,756 | $2,179,903$ | 752,695 | $1,869,740$ | $1,426,215$ | 751,197 | 41,740 | 41,705 | 5,551 | $7,231,324$ |
| $\mathbf{2 0 0 1}$ |  | 721 | 0 | 172,938 | $1,819,337$ | 355,303 | $1,040,416$ | $1,156,622$ | $2,363,650$ |  | 28,483 | 2,541 | $6,940,011$ |
| $\mathbf{2 0 0 2}$ |  | 3,865 | 0 | 284,942 | 872,703 | 174,843 | 563,215 | $2,027,187$ | 793,989 | 9,082 | 23,782 | 2,113 | $4,755,721$ |
| $\mathbf{2 0 0 3}$ | 0 | 0 | 5,022 | 11,624 | $1,746,615$ | 77,404 | 698,889 | 815,442 | 313,626 | 2,110 | 29,588 | 2,556 | $3,702,876$ |
| $\mathbf{2 0 0 4}$ |  | 355 | 17,591 | 114,926 | 752,199 | 123,960 | 498,052 | $1,487,334$ | 443,048 | 198,217 | 20,562 | 3,395 | $3,659,639$ |
| $\mathbf{2 0 0 5}$ |  | 0 |  | 136,640 | $2,204,518$ | 203,543 | 121,069 | 617,330 | 416,023 | 112,246 | 82,671 | 2,007 | $3,896,047$ |
| $\mathbf{2 0 0 6}$ |  | 0 |  | 42,308 | $2,733,503$ | 202,726 | 100,299 | 824,155 | 855,488 | 35,082 | 13,727 | 5,132 | $4,812,420$ |
| $\mathbf{2 0 0 7}$ |  | 2,185 |  | 372,675 | $1,085,227$ | 46,461 | 123,815 | 366,773 | 355,375 | 105,524 | 46,784 | 949 | $2,505,768$ |
| $\mathbf{2 0 0 8}$ |  |  |  | 59,763 | $3,708,364$ | 152,662 | 86,259 | 634,046 | 236,165 | 370,319 | 31,492 | 711 | $5,279,781$ |
| $\mathbf{2 0 0 9}$ |  |  |  | 6,702 | 205,284 | 10,106 | 29,705 | 168,214 | 494,626 | 112,183 | 29,232 | 285 | $1,056,337$ |
| $\mathbf{2 0 1 0}$ | 1,853 |  |  | 6,799 | 240,108 | 42,070 | 417,219 | 532,657 | 739,955 | 123,236 | 18,048 | 38 | $2,121,983$ |
| $\mathbf{2 0 1 1}$ |  |  |  | 118,616 | 288,439 | 13,584 | 50,974 | 743,528 | 374,910 | 19,138 | 21,044 | 520 | $1,630,753$ |
| $\mathbf{2 0 1 2}$ |  |  |  | 29,613 | $1,383,894$ | 212,573 | 72,092 | 273,507 | 381,441 | 332,241 | 85,553 | 0 | $2,770,914$ |
| $\mathbf{2 0 1 3}$ |  | 32,344 |  | 18,652 | 330,665 | 51,611 | 19,847 | 205,203 | 252,362 | 23,534 | 21,012 | 561 | 955,791 |
| $\mathbf{2 0 1 4}$ |  |  | 724 | 794 | 193,962 | 55,077 | 27,392 | 374,944 | $1,067,230$ | 568,787 | 7,640 | 614 | $2,297,164$ |
| $\mathbf{2 0 1 5}$ |  |  |  | 14,459 | 598,126 | 33,522 | 340,850 | 232,363 | $1,608,036$ | 215,117 | 48,052 | 0 | $3,090,525$ |
| $\mathbf{2 0 1 6}$ | 4,130 |  | 1,932 | 8,767 | 278,043 | 62,864 | 161,159 | $1,467,470$ | $1,091,422$ | 118,374 | 16,152 | 0 | $3,210,313$ |
| $\mathbf{2 0 1 7}$ | 557 | 0 | 791 | 138,156 | 146,036 | 38,219 | 41,674 | 454,456 | 351,433 | 186,547 | 95,061 | 0 | $1,452,930$ |

Notes: FL: state-reported landings 1983-present (NMFS-reported, FES-calibrated estimates limited to Nassau and Duval Counties and adjusted on the basis of the genome proportions of weakfish within the Cynoscion-complex found in those counties' waters).

Table 7. Indices of relative weakfish abundance from 2000 to 2017. (Source: State compliance reports)

| Year | $\begin{gathered} \text { MA Tr } \\ \text { BB \& VS } \\ \text { YOY } \end{gathered}$ | $\begin{gathered} \text { MA Tr } \\ \text { BB \& VS } \\ 1+ \end{gathered}$ | RI Tr Coast YOY | $\begin{gathered} \hline \text { CT Tr } \\ \text { LIS } \\ \text { YOY } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { CT Tr } \\ \text { LIS } \\ 1+ \end{gathered}$ | NY Tr Coast YOY | NJ Tr DE Bay YOY | NJ Tr <br> Ocean <br> 1+ | DE Tr DE Bay YOY | DE Tr Inland YOY | DE Tr DE Bay 1+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { mean\#/ } \\ \text { tow } \end{gathered}$ | $\begin{gathered} \text { mean\#/ } \\ \text { tow } \end{gathered}$ | mean \#/ tow | GM\#/ tow | GM\#/ tow | AM\#/ tow | GM\#/ tow | GM\#/ tow | GM\#/ <br> tow | GM\#/ tow | $\begin{aligned} & \hline \text { \#/ } \\ & \text { nm } \end{aligned}$ |
| 2000 |  |  | 9.38 | 63.31 | 0.30 | 167.10 | 0.59 | 2.36 | 14.14 | 1.64 | 179.12 |
| 2001 |  |  | 19.33 | 40.09 | 0.52 | 113.70 | 15.03 | 0.68 | 7.56 | 1.53 | 80.70 |
| 2002 |  |  | 8.40 | 41.35 | 0.16 | 145.20 | 19.70 | 1.59 | 5.96 | 1.31 | 144.98 |
| 2003 |  |  | 198.00 | 49.41 | 0.07 | 69.80 | 3.11 | 0.08 | 10.44 | 2.44 | 65.78 |
| 2004 |  |  | 1.88 | 58.98 | 0.21 | 43.90 | 8.48 | 1.79 | 8.39 | 3.32 | 48.88 |
| 2005 |  |  | 128.93 | 25.86 | 0.12 | 226.50 | 20.60 | 0.46 | 16.82 | 3.84 | 29.00 |
| 2006 |  |  | 0.36 | 1.05 | 0.29 | 55.10 | 12.24 | 0.19 | 5.35 | 1.60 | 106.31 |
| 2007 |  |  | 36.10 | 63.93 | 0.06 | 92.12 | 25.53 | 0.83 | 13.70 | 2.98 | 43.16 |
| 2008 |  |  | 0.55 | 9.07 | 0.08 | 51.50 | 7.86 | 0.35 | 6.74 | 1.02 | 45.94 |
| 2009 |  |  | 7.29 | 6.48 | 0.30 | 13.30 | 7.29 | 0.33 | 8.56 | 5.91 | 35.83 |
| 2010 |  |  | 7.95 | - | - | 15.30 | 10.51 | 0.69 | 11.98 | 3.49 | 43.57 |
| 2011 |  |  | 70.63 | 11.64 | 0.68 | 34.50 | 15.80 | 22.32 | 7.89 | 3.30 | 89.22 |
| 2012 |  |  | 122.30 | 21.96 | 0.73 | 9.40 | 1.26 | 0.23 | 7.55 | 3.44 | 106.43 |
| 2013 |  |  | 13.20 | 7.01 | 0.52 | 22.60 | 15.55 | 0.39 | 13.49 | 4.47 | 71.78 |
| 2014 |  |  | 1.27 | 41.53 | 0.08 | 97.70 | 4.87 | 0.98 | 13.67 | 4.71 | 38.01 |
| 2015 | 0.21 |  | 46.47 | 30.91 | 0.46 | 56.00 | 2.27 | 1.44 | 10.22 | 3.88 | 76.46 |
| 2016 | 23.00 | 0.29 | 4.14 | 5.87 | 0.81 | 57.60 | 2.34 | 1.34 | 7.47 | 3.00 | 154.40 |
| 2017 | 0.30 | 0.00 | 32.25 | 8.20 | 0.43 | 59.20 | 4.13 | 3.74 | 5.18 | 1.44 | 101.98 |

Table 7 (continued). Indices of relative weakfish abundance from 2000 to 2017. (Source: State compliance reports)

| Year | MD Tr ChesBay YOY | MD Tr <br> Coast <br> YOY | VA Tr ChesBay YOY | NC Tr <br> Pamlico YOY | NC Tr Pamlico YOY | $\begin{gathered} \text { NC Gn } \\ \text { Pamlico } \\ 1+ \end{gathered}$ | SC Tr Inshore YOY | $\begin{gathered} \hline \text { SC SEAMAP } \\ \text { Summer } \\ 0+/ 1+ \end{gathered}$ | $\begin{aligned} & \hline \text { SC SEAMAP } \\ & \text { Fall } \\ & 0+/ 1+ \end{aligned}$ | $\begin{gathered} \text { GA Tr } \\ \text { Coast } \\ 0+ \end{gathered}$ | $\begin{aligned} & \text { FL Tr } \\ & \text { Jax } \\ & \text { YOY } \end{aligned}$ | $\begin{gathered} \text { FL Tr } \\ \text { IR \& Jax } \\ \text { 1+ } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GM\#/ tow | GM\#/ ha | GM\#/ tow | $\begin{aligned} & \text { \#/ } \\ & \text { tow } \end{aligned}$ | $\begin{gathered} \text { \#/ } \\ \text { tow } \end{gathered}$ | $\begin{aligned} & \text { \#/ } \\ & \text { set } \end{aligned}$ | $\begin{aligned} & \text { \#/ } \\ & \text { tow } \end{aligned}$ | $\begin{aligned} & \text { \#/ } \\ & \text { tow } \end{aligned}$ | $\begin{aligned} & \text { \#/ } \\ & \text { tow } \end{aligned}$ | $\begin{gathered} \text { \#/ } \\ \text { obs hr } \end{gathered}$ | med/ tow | med/ tow |
| 2000 | 6.54 | 2.34 | 8.35 | 62.99 |  |  |  | 20.30 | 5.10 |  |  |  |
| 2001 | 8.10 | 2.56 | 5.09 | 30.30 |  | 1.42 |  | 19.20 | 5.40 |  | 0.79 | 0.23 |
| 2002 | 3.92 | 0.61 | 6.93 | 22.00 |  | 1.40 |  | 16.20 | 2.80 |  | 1.45 | 0.52 |
| 2003 | 4.89 | 5.64 | 9.23 | 23.93 |  | 1.22 |  | 14.20 | 3.90 | 105.44 | 4.35 | 0.34 |
| 2004 | 1.62 | 3.39 | 6.66 | 28.75 |  | 1.32 |  | 3.10 | 3.40 | 94.42 | 4.04 | 0.19 |
| 2005 | 3.55 | 4.98 | 5.69 | 28.76 |  | 1.24 |  | 1.80 | 9.40 | 32.08 | 1.83 | 0.73 |
| 2006 | 2.41 | 1.50 | 6.34 | 39.09 |  | 0.92 |  | 4.10 | 3.10 | 79.96 | 1.78 | 0.44 |
| 2007 | 1.60 | 2.32 | 5.35 | 56.80 |  | 0.43 |  | 11.40 | 18.40 | 159.64 | 1.68 | 0.46 |
| 2008 | 0.79 | 0.23 | 5.77 | 50.30 |  | 0.49 |  | 11.30 | 17.70 | 75.55 | 1.66 | 0.39 |
| 2009 | 1.42 | 1.33 | 6.18 | 58.89 |  | 0.31 |  | 15.30 | 11.90 | 104.76 | 2.12 | 1.17 |
| 2010 | 1.68 | 2.16 | 14.11 | 32.45 |  | 0.48 |  | 14.80 | 14.60 | 128.48 | 0.74 | 0.70 |
| 2011 | 2.04 | 1.90 | 5.23 | 33.69 |  | 0.36 |  | 74.10 | 13.90 | 104.20 | 0.74 | 0.52 |
| 2012 | 0.46 | 0.46 | 3.02 | 40.66 |  | 0.92 |  | 18.80 | 9.80 | 91.64 | 1.79 | 0.65 |
| 2013 | 2.15 | 1.02 | 9.41 | 58.53 |  | 0.69 |  | 25.50 | 0.20 | 131.52 | 0.69 | 0.12 |
| 2014 | 2.95 | 1.28 | 3.77 | 32.83 |  | 0.50 |  | 12.00 | 7.60 | 64.16 | 0.62 | 0.19 |
| 2015 | 2.23 | 0.88 | 3.77 | 43.30 |  | 0.30 | 19.30 | 18.20 | 257.80 | 89.84 | 1.08 | 0.03 |
| 2016 | 0.71 | 1.69 | 1.44 | 43.00 | 34.50 | 0.30 | 22.60 | 14.50 | 24.30 | 62.40 | 0.69 | 0.21 |
| 2017 | 0.65 | 0.54 |  | 41.90 | 19.10 | 0.31 | 26.60 | 1.46 | 5.73 | 44.30 | 0.49 | 0.27 |

Table 8. Evaluation of the Coastwide Management Trigger (Section 3.3.1 of Addendum II to Amendment 4): percent change of each state's 2017 total landings (lbs) to its five-year (2013-2017) mean total landings.

|  | MA | RI | CT | NY | NJ | DE | MD | PRFC | VA | NC | SC | GA | FL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 1 3 - 2 0 1 7}$ | 2,305 | 17,413 | 4,379 | 76,373 | 127,776 | 11,774 | 19,009 | 11 | 64,212 | 181,073 | 51,636 | 12,503 | 1,535 |
| $\mathbf{2 0 1 7}$ | 5,283 | 17,243 | 3,956 | 48,693 | 231,100 | 3,719 | 6,686 | 5 | 41,996 | 141,384 | 58,510 | 47,776 | 2,237 |
| \% change | $129 \%$ | $-1 \%$ | $-10 \%$ | $-36 \%$ | $81 \%$ | $-68 \%$ | $-65 \%$ | $-52 \%$ | $-35 \%$ | $-22 \%$ | $13 \%$ | $282 \%$ | $46 \%$ |

Table 9. Biological sampling of weakfish in 2017, Massachusetts-Florida (Sampling requirements are based on Addendum I to Amendment 4 and 2017 landings data and are reported in state compliance reports. Requirements are based on recreational harvest estimates using the CHTS. Values highlighted with red bold font do not meet sampling requirements).

|  | Samples Required |  | Samples Completed |  | Fisheries Sampled |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ages | Lengths | Ages | Lengths |  |
| MA* $^{*}$ | 0 | 0 | 0 | 0 | NA |
| RI | 16 | 33 | 68 | 248 | commercial, RIDFW Trawl Survey (legal/non-legal size reported) |
| CT* | 0 | 0 | 0 | 0 | NA |
| NY | 42 | 84 | 48 | 48 | commercial |
| NJ | 27 | 18 | 57 | 116 | NJ Ocean Trawl Survey/ research surveys |
| DE | 8 | 14 | 15 | 16 | commercial (GN) |
| MD | 2 | 2 | 27 | 27 | commercial (PN) |
| PRFC | 0 | 0 | 0 | 0 | NA |
| VA | 74 | 115 | 253 | 2,813 | commercial (GN, H\&L, PN, HS) |
| NC | 156 | 217 | 359 | 1,248 | commercial (SN, GN, PN, HS, others), recreational |
| SC | 12 | 0 | 107 | 727 | fishery independent, recreational |
| GA* | 0 | 0 | 0 | 0 | NA |
| FL* | 0 | 0 | 0 | 0 | NA |

* de minimis in 2017; not required to conduct sampling; sample numbers provided to show from what states were exempt NA=not applicable, GN= gill net, $\mathrm{PN}=$ pound net, $\mathrm{H} \& L=$ hook and line, $\mathrm{HS}=$ haul seine, $\mathrm{SN}=$ sink net


## XI. Figures

Figure 1. Estimated weakfish age 1+ biomass, fishing mortality, and natural mortality from 1982 to 2014 (ASMFC 2016).


Figure 2. Recreational harvest estimated using the Coastal Household Telephone Survey (CHTS) and the mail-based Fishing Effort Survey (FES). (Source: personal communication with NOAA Fisheries, Fisheries Statistics Division. [10/06/2018])


Figure 3. Commercial and recreational weakfish harvest (pounds), from 1982 to 2017 (see Tables 3 and 4 for source information and values).


Figure 4. Recreational weakfish harvest and releases (number of fish), from 1982 to 2017 (see Tables 5 and 6 for source information and values).



[^0]:    III. Status of the Fishery

    This report includes updated recreational estimates from the Marine Recreational Information Program's transition to the mail-based Fishing Effort Survey (FES) on July 1, 2018. Therefore, recreational estimates will likely be different from those shown in past FMP Reviews and state compliance reports (due annually on September 1) through 2018. Figure 2 shows coastwide recreational landings including estimates using both the previous Coastal Household Telephone Survey (CHTS) and FES calibration for comparison, but other figures, tables, and text will only show data based on the FES calibration. Data based on either survey can be referenced at: https://www.st.nmfs.noaa.gov/st1/recreational/queries/.

[^1]:    ${ }^{1}$ Some Mid-Atlantic trawl fleet observer coverage has been implemented under ACCSP funding.

[^2]:    ${ }^{2}$ Gillnet selectivity has been investigated by Swihart et al (2000). Some gear selectivity information in Amendment 3 to the ASMFC Weakfish FMP. Information can also be obtained from the North Carolina Pamlico Sound Independent Gill Net Survey.
    ${ }^{3}$ A university led weakfish tagging study has been ongoing in North Carolina and Delaware since 2014. The objective of the study is to evaluate movement and stock mixing of weakfish along the U.S. east coast and to estimate seasonal and annual rates of fishing and natural mortality. The study is slated to be completed in late 2017 with results available to the weakfish TC in early 2018.

[^3]:    ${ }^{4}$ Data are available for power plants in the Delaware Bay area and North Carolina. Also see Heimbuch et al. 2007. Assessing coastwide effects of power plant entrainment and impingement on fish populations: Atlantic menhaden example. North American Journal of Fisheries Management. 27: 569-577.

