# FISHERY MANAGEMENT PLAN REVIEW FOR WEAKFISH (Cynoscion regalis) 

 2002 FISHING YEARPlan Review Team

Brad Spear, ASMFC, Chair
Rick Cole, DE
Louis Daniel, NC
Rob O'Reilly, VA

## FISHERY MANAGEMENT PLAN REVIEW FOR WEAKFISH (Cynoscion regalis)

## I. Status of the Fisheries Management Plan

The Atlantic States Marine Fisheries Commission (ASMFC) approved Amendment 4 to the Weakfish Fishery Management Plan in November 2002. The amendment was implemented for the first time in 2003. This review, however, is of activities of the 2002 fishery and Amendment 3.

The ASMFC adopted its first Fishery Management Plan for Weakfish in 1985. Amendment 1 to the FMP, which superseded the original plan, was adopted in 1992, and Amendment 2 was adopted in October 1994. Weakfish are currently managed under the guidelines contained in Amendment 3, which was approved by the Commission in May 1996 and completely replaced all previous amendments. Amendment 3 and Addendum 1 have been replaced by Amendment 4.

The goals of Amendment 3 were to utilize interstate management so that Atlantic coastal weakfish recover to healthy levels which will maintain commercial and recreational harvest consistent with self-sustaining spawning stock and to provide for restoration and maintenance of essential habitat. The management objectives were: 1) to restore the weakfish population over a 5 -year period; 2) to reach and maintain a target fishing mortality rate ( F ) of $0.5 ; 3$ ) to restore the expanded age and size structure; 4) to achieve compatible and equitable management measures among jurisdictions; 5.) to promote cooperative interstate research, monitoring and law enforcement; 6) to promote identification and conservation of habitat; and 7) to establish standards and procedures for both the implementation of Amendment \#3 and for determination of states' compliance with provisions of the management plan.

Weakfish were managed under this plan as a single stock throughout their coastal range. All states from Massachusetts to Florida and the Potomac River Fisheries Commission have a declared interest in the Weakfish FMP. Responsibility for the FMP is assigned to the Weakfish Management Board, Plan Review Team, Technical Committee, Stock Assessment SubCommittee and Advisory Panel.

## II. Status of the Stock

A weakfish stock assessment of data through 1998 was conducted in 1999 and reviewed by the Stock Assessment Review Committee for peer review at the $30^{\text {th }}$ Northeast Regional Stock Assessment Workshop (NMFS 2000). This report indicated that weakfish were "at a high level of abundance and subject to low fishing mortality rates." This assessment was updated in 2002 with data through 2000. Much of the language below was taken from this updated assessment (Kahn 2002).

Virtual population analysis was used to estimate fishing mortality and stock size (ADAPT VPA in FACT, Northeast Fishery Science Center; Gavaris 1988; Conser and Powers 1990). This is a type of analysis that uses data on the number of fish caught at various ages or lengths to estimate fishing mortality as well as numbers of spawning individuals in a population.

The most recent stock assessment update conducted with data through 2000 indicates that the management measures put in place in Amendment 3 resulted in positive trends for the weakfish population. The absolute magnitude of impact should be viewed with caution given the uncertainty of the fishing mortality and spawning stock biomass estimates for the most recent year of the assessment, which is often the case with these final year estimates. Once more data is added to the assessment the fishing mortality is expected to rise and the spawning stock biomass is expected to decrease.

This assessment indicates that weakfish are at a high level of abundance and fishing mortality appears to be low. Recent history of the coast-wide stock shows that spawning stock biomass (total weight of fish in a stock that are old enough to spawn) estimates were low from 1982 through 1985. High recruitment of age one weakfish in 1985-1987 produced a brief increase in biomass. By 1989, biomass had again declined and remained low through 1993. Since then, biomass has been building to higher levels. While the exact level of bias in the most recent estimates is unknown, the current level of SSB is well above the proposed threshold level in Amendment 4 of 14,400 MT (Figure 1).

Estimates of fishing mortality (the rate fish are being removed by human activity) range from a high in 1994 of 2.52 to a low of in 2000 of 0.12 . Since 1995, estimates of $F$ have been below the Amendment 3 target of 0.50 . The 2000 estimate of 0.12 could be underestimated. Despite this bias, the corrected value would still be below the fishing mortality target of 0.31 in Amendment 4 and far below the proposed fishing mortality threshold of 0.50 (Figure 2).

One goal of Amendment 3 was to support an increase in the size and age structure. The model results indicate this is happening. In 1982, the estimate of the proportion of age $6+$ fish was $1.0 \%$ of the total. By 1990, this had shrunk to only $0.3 \%$ of the total number of weakfish. This proportion has been increasing in recent years to the level of $6.8 \%$ of the total in 2001.

## III. Status of the Fishery

The majority of commercially and recreationally caught weakfish are landed from state waters. The dominant commercial gears used include gill nets, pound nets, haul seines, and trawls. The majority of commercial landings occur in the fall and winter months, presumably as the fish congregate to migrate. The recreational fishery catches weakfish using live or cut bait, jigging, trolling and chumming. Recreational harvests typically peak in the warmer months (May through October) when effort tends to be greatest. Typically recreational landings are recorded in numbers and commercial landings are recorded in pounds. However, Figure 3 uses converted recreational landings to pounds in order to compare the landings of the fisheries

## Commercial Fishery --

The NMFS compiles commercial weakfish landings. The data are cooperatively collected by the NMFS and state fishery agencies from state mandated trip-tickets, landing weigh-out reports from seafood dealers, federal logbooks, shipboard and portside interviews and biological sampling of catches.

Recently there is an increasing trend of the recreational fishery accounting for a higher percentage of the catch. Coastwide commercial weakfish landings from 1950-2001 fluctuated from $1,397 \mathrm{mt}$ to $16,312 \mathrm{mt}$ (Table 1).

The commercial weakfish fishery occurs during the fall and winter as the species migrates from estuaries to overwintering grounds in the South Atlantic (Hogarth et al. 1995b). Weakfish are taken primarily by trawls, pound nets, gill nets and haul seines. Weakfish landings were dominated by the trawl fishery from the 1950's through the mid -1980's, when gill net landings began to account for the majority of the landings. Gill net landings in the latter half of the 1990's were about double that of the trawl fishery.

New Jersey, North Carolina and Virginia have dominated commercial weakfish landings since 1950. North Carolina has annually landed the most weakfish since 1972 and Virginia has consistently ranked second since 1993. North Carolina has accounted for about half of all the weakfish commercially landed since 1951.

## Recreational Fishery -

Recreational catch statistics are collected by the NMFS in the Marine Recreational Fisheries Statistics Survey (MRFSS). Effort data is collected through telephone interviews. Catch expansions are based on angler interviews and biological sampling conducted by trained interviewers stationed at fishing access sites.

Recreational landings by number ranged from about 960,000 fish in 1992 to a high of 9,344,000 fish in 1981. Recreational landings were relatively high from 1983-1988. Recreational landings abruptly fell in 1989. Annual recreational landings have fluctuated between 1 million and 2.8 million fish since 1993. The number of fish released alive by anglers has been relatively high since 1993. For these trends in pounds, please see Table 2.

Recreational landings from the EEZ accounted for only about 13 percent of the coastwide landings since 1981. Over half of the recreational harvest came from inshore saltwater and brackish water bodies such as bays, estuaries, and sounds. Virginia, New Jersey, Maryland and Delaware have accounted for over 85 percent of the coastwide harvest since 1981. New Jersey has accounted for the majority of the recreational harvest since 1994.

## IV. Status of Research and Monitoring

Young-of -the-year indices of relative abundance are produced by Rhode Island, New York, Delaware, Maryland (2 different indices), Virginia, North Carolina and Florida. North Carolina also produces an age 1 index, while Connecticut, New Jersey and Delaware produce agestructured indices of relative abundance from research trawl surveys. The National Marine Fisheries Service also produces an age-structured index for the Mid-Atlantic coast, while SEAMAP produces one for the South Atlantic Coast.

The Marine Recreational Fisheries Statistics Survey collects data on recreational landings. North Carolina, Virginia, Maryland and Delaware collect biological data from commercial landings, including age data. There is no biological data from commercial landings north of Delaware.

North Carolina has submitted an exempted fishery request endorsed by the ASMFC Weakfish Board. The National Marine Fisheries Service and North Carolina continue to work together to move this request forward. Georgia is continuing their Bycatch Reduction Device (BRD) testing program as well as the bycatch characterization study.

The Potomac River Fisheries Commission in cooperation with Virginia Institute of Marine Sciences (VIMS) has completed research into the use of escape panels in pound nets. These are currently being used in an incentive-based program on the Potomac River. North Carolina also has completed work exploring bycatch reduction in long haul seines.

Biological sampling of commercial landings is an important component of catch-at-age analysis, such as the virtual population analysis currently used to assess weakfish status. Currently, only four states conduct such sampling: North Carolina, Virginia, Maryland and Delaware.
Development of sampling programs for states with significant commercial landings is needed to insure accurate assessments. Recent research suggests there are many separate weakfish spawning stocks. Consequently, assuming the catch composition of northern areas is equivalent to that of southern areas is highly questionable and weakens confidence in assessment results.

## V. Research Needs for Weakfish

## Biological:

## High Priority

Collect catch and effort data including size and age composition of the catch, determine stock mortality throughout the range, and define gear characteristics. In particular, increase length-frequency sampling, particularly in fisheries from Maryland and further north.

Develop latitudinal / seasonal / gear specific age length keys for the Atlantic coast. Increase sample sizes to consider gear specific keys.

Derive estimates of discard mortality rates and the magnitude of discards for all commercial gear types from both directed and non-directed fisheries. In particular, quantify trawl bycatch, refine estimates of mortality for below minimum size fish, and focus on factors such as distance from shore and geographical differences.

Update the scale - otolith comparison for weakfish.

## Medium Priority

Define reproductive biology of weakfish, including size at sexual maturity, maturity schedules, fecundity, and spawning periodicity. Continue research on female spawning patterns: what is the seasonal and geographical extent of "batch" spawning; do females exhibit spawning site fidelity?

Conduct hydrophonic studies to delineate weakfish spawning habitat locations and environmental preferences (temperature, depth, substrate, etc.) and enable quantification of spawning habitat.
Compile existing data on larval and juvenile distribution from existing databases in order to obtain preliminary indications of spawning and nursery habitat location and extent.

Continue studies on mesh-size selectivity; up-to-date (1995) information is available only for North Carolina's gill net fishery. Mesh-size selectivity studies for trawl fisheries are particularly sparse.

## Low Priority

Identify stocks and determine coastal movements and the extent of stock mixing, including characterization of stocks in overwintering grounds. (e.g. tagging)

Biological studies should be conducted to better understand migratory aspects and how this relates to observed trends in weight at age.

Continue studies on recreational hook-and-release mortality rates, including factors such as depth, warmer water temperatures, and fish size in the analysis. Studies are needed in deep and warm water conditions. Further consideration of release mortality in both the recreational and commercial fisheries is needed, and methods investigated to improve survival among released fish.

Document the impact of power plants and other water intakes on larval, post larval and juvenile weakfish mortality in spawning and nursery areas, and calculate the resultant impact to adult sock size.
Define restrictions necessary for implementation of projects in spawning and overwintering areas and develop policies on limiting development projects seasonally or spatially.

Develop a coastwide tagging database.
Develop a spawner recruit relationship and examine the relationships between parental stock size and environmental factors on year-class strength.

## Social

Assemble socio-demographic-economic data as it becomes available from ACCSP.

## Economic

Assemble socio-demographic-economic data as it becomes available from ACCSP.

Detailed information on production activities (e.g., fishing effort and labor used by gear, vessel characteristics, areas fished, etc.) and costs and earnings for the harvesting and processing sectors

Information on retail sales and demand for weakfish in order to estimate the demand and economic benefits of at-home and away-from home consumption of weakfish

Development of bioeconomic models that link the underlying population dynamics to the economic aspects of the commercial and recreational fisheries

Distribution of weakfish to the various markets and across states
Information on the margins of various stages of processing and marketing also need to be obtained; this information is necessary to construct mathematical models that can be used to estimate the economic impacts of management and regulation

A directed data collection program for weakfish including the same variables presently collected by NMFS in support of MRFSS and by the economic add-on. Data collected includes information on travel distance, mode of angling, expenditures, area fished, catch on previous trips, and other information.

Development of commercial decision-making or behavioral models to explain how fishers might respond to various regulations

Estimation and assessment of consumer (net economic benefits to consumers) and producer (net economic benefits or profits to producers) surplus; the sum of consumer and producer surplus is a measure of the net economic value to society of a good or service

Development of input/output models for all states having commercial weakfish activity, or alternatively, full-blown economic impact models, which might consist of input/output models or General Equilibrium models

Determination of the economic value derived from recreational angling including the economic value of a catch and release fishery

## Habitat

Conduct hydropohonic studies to delineate weakfish spawning habitat locations and environmental preferences (temperature, depth, substrate, etc) and enable quantification of spawning habitat.

Compile existing data on larval and juvenile distribution from existing databases in order to obtain preliminary indications of spawning and nursery habitat location and extent.

Document the impact of power plants and other water intakes on larval, post larval and juvenile weakfish mortality in spawning and nursery areas, and calculate the resulting impacts on adult stock size.

Define restrictions necessary for implementation of projects in spawning and overwintering areas and develop policies on limiting development projects seasonally or spatially.

## VI. Status of Management Measures

Under Amendment 3, each state was required to implement harvest reduction strategies designed to recover weakfish over a 5-year period. Restoration of historic age and size structure, represented currently by the average percentage of fish numbers at each age from 1979 to 1994, is also a plan goal. According to the 26th SAW, the projected fishing mortality for 1996 was achieved and according to the most recent stock assessment fishing mortality is below the Amendment 3 target of 0.50. The most recent update of the stock assessment estimates that the fishing mortality continues to be below the Amendment 4 target of 0.31 with Spawning Stock Biomass above the proposed threshold.

The intent of Amendment 4 is to establish a control rule to accurately categorize the status of the stock by considering both fishing mortality and spawning stock biomass, simultaneously. The control rule is established with targets and thresholds for fishing mortality and a threshold for spawning stock biomass. The use of fishing mortality targets and thresholds and a threshold (spawning stock) biomass provides managers with a series of factors to use when evaluating the status of the stock. Amendment 4 establishes an overfishing definition with a fishing mortality target of $\mathrm{F}_{\text {target }}=\mathrm{F}_{30 \%}=0.31$, a fishing mortality threshold of $\mathrm{F}_{\text {threshold }}=\mathrm{F}_{20 \%}=0.5$, and a spawning stock biomass threshold of $\mathrm{SSB}_{\text {threshold }}=\mathrm{SSB}_{20} \%=31.8$ million pounds.

To continue current fishing mortality rates that have led to the strong improvements in the weakfish population, Amendment 4 maintains current commercial fishery management measures. However, a new recreational reference period, revised reference points, and a weakfish population, which has changed since the adoption of Amendment 3, lead to changes in the recreational management measures to reduce high creel limits in some states where the limits are no longer appropriate.

## VII. Current State-by-State Implementation per Compliance Requirements

As of October 2003, all states were in compliance with Amendment 3 to the Weakfish Fishery Management Plan. However, Rhode Island no longer qualifies for de minimis status and the Plan Review Team has recommended that Rhode Island implement additional commercial fishery management measures prior to the 2003 fishing year. The states of South Carolina, Georgia and Florida remain de minimis states as defined in Amendment 3. Their landings for 2001 and 2002 are well below the standard for de minimis of $1 \%$ of coastwide commercial and recreational directed landings for 2001 and 2002.

## VII. Status of Assessment Advice

Virtual population analysis was used for the most recent assessments (ADAPT VPA in FACT, Northeast Fishery Science Center). This is a type of analysis that uses data on the number of fish caught at various ages or lengths to estimate fishing mortality as well as numbers of spawning individuals in a population. The stock assessment subcommittee is exploring other approaches for future assessments including using a separable virtual population analysis, Integrated Catch at Age (ICA), and relative exploitation. The Plan Review Team supports the continued exploration of these additional approaches in preparation for the 2004 benchmark assessment for weakfish.

## VIII. Recommendations

The Plan Review Team recommends that:

- All states provide recent information and data about the changes in their commercial fisheries since the 1990-92 or (1989-91) base period to the technical committee so that the closed season strategy targets the significant commercial fisheries. The technical committee should determine what is "significant" and outline to the Board changes in what fisheries should be using the closed season strategy.
- All states implement the commercial and recreational measures, and monitoring requirements and recommendations of Amendment 4.


## IX. References

Hogarth, W. T., T. Meyer, P. Perra and R. H. Shaefer. 1995b. Final environmental impact statement and draft regulatory impact review for a regulatory amendment for the Atlantic Coast weakfish fishery in the Exclusive Economic Zone (EEZ). U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Fisheries Conservation and Management, Recreational and Interjurisdictional Fisheries Division, Silver Spring, MD. 84 pp.

Northeast Fishery Science Center. 2000. Report of the $30^{\text {th }}$ Northeast Regional Stock Assessment Workshop ( $30^{\text {th }}$ SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments. Northeast Fish. Sci. Cent. Ref. Doc. 900-03, Woods Hole, MA.


Figure 1: Spawning Stock Biomass - This graph depicts how spawning stock biomass estimates have changed over time based on ASMFC stock assessments. As more data is added to the assessment each year, the estimates of SSB for the most recent years' decreases. This graph also indicates the proposed Amendment 4 SSB Threshold of 31.8 million pounds.


Figure 2: Fishing Mortality - This graph depicts how fishing mortality rates have changed over time based on ASMFC stock assessments. As more data is added to the assessment each year, the estimates of fishing mortality
for the most recent years increase. This graph also includes the proposed Amendment 4 fishing mortality target of 0.31 .


Figure 3: Weakfish landings by fishery. Both the recreational and commercial landings are listed in pounds. However, the total recreational catch with releases is listed in numbers.

| Total |
| ---: |
| $\mathbf{1 9 , 4 7 8 , 2 7 4}$ |
| $\mathbf{1 7 , 4 7 5 , 0 0 3}$ |
| $\mathbf{1 9 , 7 7 3 , 5 8 7}$ |
| $\mathbf{1 6 , 9 5 3 , 3 5 7}$ |
| $\mathbf{2 1 , 1 8 7 , 9 7 3}$ |
| $\mathbf{1 7 , 0 7 2 , 1 5 9}$ |
| $\mathbf{2 0 , 5 2 6 , 4 0 2}$ |
| $\mathbf{1 4 , 1 6 2 , 1 7 8}$ |
| $\mathbf{9 , 4 3 8 , 1 9 0}$ |
| $\mathbf{8 , 6 9 2 , 7 6 0}$ |
| $\mathbf{7 , 4 5 3 , 7 8 8}$ |
| $\mathbf{6 , 8 5 3 , 5 7 9}$ |
| $\mathbf{6 , 1 9 0 , 5 2 0}$ |
| $\mathbf{7 , 0 9 8 , 8 3 1}$ |
| $\mathbf{7 , 2 5 1 , 4 2 7}$ |
| $\mathbf{7 , 2 9 7 , 8 5 9}$ |
| $\mathbf{8 , 4 2 4 , 7 2 5}$ |
| $\mathbf{6 , 9 0 7 , 8 3 6}$ |
| $5,389,445$ |
| $\mathbf{5 , 0 1 0 , 0 4 9}$ |
| $\mathbf{4 , 7 6 4 , 2 8 6}$ |

Table 2: Atlantic Coast recreational fisheries landings of weakfish (pounds), by state and year (1982-2002).

