State of Stock: Relative to the biological reference points proposed by the working group (WG) in the 2005 SARC, the bluefish stock is not overfished and overfishing is not occurring ($\frac{1}{2}\text{B}_{\text{MSY}} = 73,526 \text{ mt}; F_{\text{MSY}} = 0.19$). This conclusion is based on a 2009 biomass estimate of 125,990 MT and $F=0.18$ from the ASAP model results. Estimates from ASAP using state and federal indices show a low fishing mortality rate (F) and an increasing trend in population biomass. January 1 population estimates show a general increase in abundance since 1997. Abundance estimates peaked in 1982 at 173 million fish, declined to 56 million in the mid-1990s and have since increased to 89 million fish in 2007. Abundance in 2009 declined to 71.3 million fish.

Forecast for 2010: Forecast yield in 2011 at status quo F (0.18) was 10,021 mt, which includes recreational discards with 15% mortality. The forecast is based on a 2010 yield of 10,272 mt.

Catch and Status Table (weights in '000 mt): Bluefish

<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>Max</th>
<th>Min</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA Commercial landings1</td>
<td>3.4</td>
<td>3.6</td>
<td>3.2</td>
<td>2.9</td>
<td>3.3</td>
<td>2.6</td>
<td>3.2</td>
<td>7.5</td>
<td>0.8</td>
<td>3.7</td>
</tr>
<tr>
<td>USA Recreational landings2</td>
<td>6.0</td>
<td>7.2</td>
<td>8.2</td>
<td>7.7</td>
<td>9.6</td>
<td>8.6</td>
<td>6.2</td>
<td>37.7</td>
<td>3.7</td>
<td>15.7</td>
</tr>
<tr>
<td>USA Recreational discards2</td>
<td>1.3</td>
<td>1.8</td>
<td>1.9</td>
<td>1.9</td>
<td>2.7</td>
<td>2.4</td>
<td>1.0</td>
<td>2.6</td>
<td>0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Total Catch3</td>
<td>10.7</td>
<td>12.6</td>
<td>13.3</td>
<td>12.5</td>
<td>15.6</td>
<td>13.6</td>
<td>10.3</td>
<td>48.8</td>
<td>8.2</td>
<td>20.7</td>
</tr>
</tbody>
</table>

1 Min, max and mean since 1950.
2 Min, max and mean landings and discard mortalities since 1982.
3 Min, max, and mean total catch since 1982.

Stock Distribution and Identification: Bluefish are highly migratory, pelagic species found along the U.S. Atlantic coast from Maine to Florida, but generally are found inshore north of the Carolinas only in warmer months (Beaumariage 1969; Lund and Maltezos 1970; Shepherd et al. 2006). Bluefish in the western North Atlantic are managed as a single stock (NEFSC 1997; Fahay et al. 1999). Genetic data support a unit stock hypothesis (Graves et al. 1992; Goodbred and Graves 1996; Davidson 2002). For management purposes, the ASMFC and MAFMC define the management unit as the portion of the stock occurring along the Atlantic Coast from Maine to the east coast of Florida.

Catches: Bluefish are one of the most sought after species by recreational anglers along the Atlantic Coast. In 2009, recreational anglers along the Atlantic Coast harvested nearly 6.2 thousand metric tons (mt) of bluefish (Figure 1, Table 1). Recreational landings have ranged from a low of 3,744 mt in 1999 to a high of 43,222 mt in 1981. Landings from the commercial bluefish fishery have been consistently lower than the recreational catch (Figure 1, Table 1). Regional variations in commercial fishing activity are linked to the seasonal migration of bluefish. Commercial landings decreased from 7,500 mt in 1981 to 3,300 mt in 1999. Commercial landings have been regulated by quota since the implementation of Amendment 1 in 2000. In 2000 and 2001, landings increased to approximately 3,600 mt and 3,900 mt, respectively, but declined in 2002 and 2003 to 3,100 mt and 3,400 mt, respectively. Landing estimates for 2009 increased to 3,151 mt (Figure 1, Table 1). Gill nets are the dominant commercial gear used to target bluefish and account for over 40% of the bluefish commercial landings from 1950 to 2003. Other commercial fishing gears including hook & line, pound nets, seines, and trawls, collectively account for approximately 50% of the commercial landings.

Data and Assessment: The ASMFC Bluefish Stock Assessment Sub-Committee compiled the commercial, recreational data, and ageing information for use in updating the assessment. The majority of commercial sampling since 1997 occurred in North Carolina and Virginia, where a large proportion of the landings are taken. Recreational landings data, length data, and discard estimates were collected from the
MRFSS survey. Age data were used from Virginia’s cooperative ageing program and consisted of season-
al age data (spring and fall age keys). State agencies between Massachusetts and Florida conduct annual
marine finfish surveys and the indices, partitioned by age, were used in a forward projecting catch at age
model (ASAP). Indices included in the model were from the NMFS fall survey (ages 0-6+), CT trawl
survey (ages 0-6+), NJ trawl survey (ages 0-2), DE trawl survey (ages 0-2), MRFSS recreational catch per
angler (ages 0-6+), and SEAMAP survey (age-0). CT trawl survey indices were not estimated for 2008
but were included (ages 0-6+) for 2009. A 15% mortality rate was applied to recreational discards and no
commercial discards were estimated for inclusion in this assessment update.

Biological Reference Points: The current biological reference points for Atlantic coast bluefish were de-
veloped for review at SARC 41 and are used in this assessment for comparison to current stock status
(½BMSY = 73,526 mt; BMSY = 147,051; FMSY = 0.19) (Table 2). The current F of 0.18 is below the SARC
41 approved FMSY of 0.19. Therefore, it is concluded that bluefish is not experiencing overfishing. The
current estimate of biomass (126,121 mt) would not be considered overfished under the FMP definition or
the BMSY value approved by SARC 41.

Fishing Mortality: Fishing mortality estimates in ASAP are based on a separability assumption. F at age
is the product of \(F_{\text{MULT}} \) and selectivity. Full selectivity prior to 1994 was achieved at age 1 while full se-
lectivity since 1995 was estimated as age 2. The 2009 \(F_{\text{MULT}} \) value equals 0.18. Fishing mortality steadily
decreased from 0.42 in 1987 to 0.21 in 2002. With the exception of 0.18 in 2009, fishing mortality has re-
mained steady since 2000 with an average F=0.24.

Total Stock Biomass: Recent mean biomass estimates peaked in 1982 at 288.2 thousand MT, then de-
clined to 79.5 thousand MT by 1994 before increasing to the 2009 level of 126.0 thousand MT.

Recruitment: Recruitment estimated in the ASAP model has remained relatively constant since 2000
around 25.0 million age-0 bluefish, with the exception of a relatively large 2006 cohort estimated as 32.3
million fish. The 2009 recruitment estimate was well below average at 10.8 million fish.

Modeling: The subcommittee updated the ASAP model that was approved in the 41st SAW peer-review.
The bluefish data were truncated to an age-6+ category to reduce the influence of ageing error and to re-
duce the bimodal nature of the catch-at-age distributions. The ASAP model allows error in the catch-at-
age as well as the assumption of separability into year and age components making it better at handling
the selectivity patterns and catch data from the bluefish fishery. In the present configuration of ASAP, se-
lectivity was estimated for two periods before and after 1994/1995.

Special Comments: The highly migratory nature of bluefish populations and the recruitment dynamics of
the species create a unique modeling situation. Migration creates seasonal fisheries with unique selectivity
patterns resulting in a bimodal partial recruitment pattern. This pattern has been identified in previous as-
sessments as a source of uncertainty in the results and has been held constant in the model. The migratory
pattern in bluefish also results in several recruitment events. A spring cohort, originating south of Cape
Hatteras, NC during spring migrations, and a summer cohort originating in the offshore Mid-Atlantic
Bight result in a bimodal age-0 size distribution. It has been hypothesized that the success of the spring
cohort controls the abundance of adult bluefish. The variable intra-annual recruitment pattern, limited age-
ing data, recent changes in the NEFSC trawl survey and lack of commercial discards also contribute to the
uncertainty in the assessment results.

Sources of Information:

Figure 1. Total catch (landings plus recreational discards), recreational and commercial landings of bluefish, Maine to Florida, 1981-2009.

Figure 2. Fishing mortality and abundance estimates of bluefish along the Atlantic coast, 1982-2009, estimated from the ASAP model.
Figure 3. Atlantic coast bluefish biomass and biological reference points based on ASAP model results.

Figure 4. Retrospective pattern of spawning biomass from the ASAP model.
Figure 5. Retrospective pattern of F_{mult} (age 2) from the updated ASAP model.

Figure 6. Retrospective pattern of total abundance from updated ASAP model.
Figure 7. Retrospective pattern of age 0 recruits from updated ASAP model.
Figure 8. Variability in ASAP 2009 estimates of F based on MCMC results.
Figure 9. Variability in ASAP 2009 estimate of SSB from MCMC results.
Table 1. Atlantic coast landings and discards of bluefish, 1974-2009.

<table>
<thead>
<tr>
<th>Year</th>
<th>Commercial Landings (mt)</th>
<th>Commercial Landings (000 lbs)</th>
<th>Recreational Landings (mt)</th>
<th>Recreational Discard (mt)</th>
<th>Recreational Catch (mt)</th>
<th>Total Landings (mt)</th>
<th>Total Catch (mt) (w/o commercial discards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>4,538</td>
<td>10,005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td>4,402</td>
<td>9,705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>4,546</td>
<td>10,022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>4,802</td>
<td>10,587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978</td>
<td>4,986</td>
<td>10,992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>5,693</td>
<td>12,551</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>6,857</td>
<td>15,117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>7,465</td>
<td>16,457</td>
<td>43,222</td>
<td>2,001</td>
<td>45,223</td>
<td></td>
<td>52,688</td>
</tr>
<tr>
<td>1982</td>
<td>6,997</td>
<td>15,426</td>
<td>37,651</td>
<td>832</td>
<td>38,483</td>
<td>44,648</td>
<td>45,480.5</td>
</tr>
<tr>
<td>1983</td>
<td>7,166</td>
<td>15,798</td>
<td>40,425</td>
<td>1,280</td>
<td>41,705</td>
<td>47,591</td>
<td>48,871.3</td>
</tr>
<tr>
<td>1984</td>
<td>5,380</td>
<td>11,861</td>
<td>30,597</td>
<td>1,260</td>
<td>31,857</td>
<td>35,977</td>
<td>37,237.1</td>
</tr>
<tr>
<td>1985</td>
<td>6,122</td>
<td>13,497</td>
<td>23,821</td>
<td>599</td>
<td>24,420</td>
<td>29,943</td>
<td>30,542.3</td>
</tr>
<tr>
<td>1986</td>
<td>6,651</td>
<td>14,663</td>
<td>42,133</td>
<td>1,544</td>
<td>43,677</td>
<td>48,784</td>
<td>50,327.6</td>
</tr>
<tr>
<td>1987</td>
<td>6,578</td>
<td>14,502</td>
<td>34,769</td>
<td>1,615</td>
<td>36,384</td>
<td>41,347</td>
<td>42,962.1</td>
</tr>
<tr>
<td>1988</td>
<td>5,380</td>
<td>11,873</td>
<td>30,597</td>
<td>1,260</td>
<td>31,857</td>
<td>35,977</td>
<td>37,237.1</td>
</tr>
<tr>
<td>1989</td>
<td>6,160</td>
<td>13,580</td>
<td>14,967</td>
<td>1,194</td>
<td>16,161</td>
<td>21,127</td>
<td>22,320.5</td>
</tr>
<tr>
<td>1990</td>
<td>6,160</td>
<td>13,580</td>
<td>14,967</td>
<td>1,194</td>
<td>16,161</td>
<td>21,127</td>
<td>22,320.5</td>
</tr>
<tr>
<td>1991</td>
<td>6,160</td>
<td>13,580</td>
<td>14,967</td>
<td>1,194</td>
<td>16,161</td>
<td>21,127</td>
<td>22,320.5</td>
</tr>
<tr>
<td>1992</td>
<td>5,205</td>
<td>11,475</td>
<td>11,011</td>
<td>979</td>
<td>11,990</td>
<td>16,216</td>
<td>17,195.1</td>
</tr>
<tr>
<td>1993</td>
<td>4,808</td>
<td>10,600</td>
<td>9,204</td>
<td>1,013</td>
<td>10,217</td>
<td>14,012</td>
<td>15,025.1</td>
</tr>
<tr>
<td>1994</td>
<td>4,304</td>
<td>9,488</td>
<td>7,049</td>
<td>1,128</td>
<td>8,177</td>
<td>11,353</td>
<td>12,480.7</td>
</tr>
<tr>
<td>1995</td>
<td>3,628</td>
<td>7,998</td>
<td>6,489</td>
<td>1,003</td>
<td>7,492</td>
<td>10,117</td>
<td>11,119.9</td>
</tr>
<tr>
<td>1996</td>
<td>4,113</td>
<td>9,066</td>
<td>5,328</td>
<td>1,010</td>
<td>6,338</td>
<td>9,441</td>
<td>10,450.8</td>
</tr>
<tr>
<td>1997</td>
<td>4,064</td>
<td>8,960</td>
<td>6,487</td>
<td>1,287</td>
<td>7,774</td>
<td>10,551</td>
<td>11,838.5</td>
</tr>
<tr>
<td>1998</td>
<td>3,739</td>
<td>8,242</td>
<td>5,595</td>
<td>999</td>
<td>6,594</td>
<td>9,334</td>
<td>10,325.2</td>
</tr>
<tr>
<td>1999</td>
<td>3,330</td>
<td>7,341</td>
<td>3,744</td>
<td>1,191</td>
<td>4,935</td>
<td>7,074</td>
<td>8,264.4</td>
</tr>
<tr>
<td>2000</td>
<td>3,647</td>
<td>8,040</td>
<td>4,811</td>
<td>1,675</td>
<td>6,486</td>
<td>8,458</td>
<td>10,132.5</td>
</tr>
<tr>
<td>2001</td>
<td>3,945</td>
<td>8,697</td>
<td>6,001</td>
<td>1,857</td>
<td>7,858</td>
<td>9,946</td>
<td>11,803.4</td>
</tr>
<tr>
<td>2002</td>
<td>3,116</td>
<td>6,869</td>
<td>5,158</td>
<td>1,448</td>
<td>6,606</td>
<td>8,274</td>
<td>9,721.4</td>
</tr>
<tr>
<td>2003</td>
<td>3,358</td>
<td>7,403</td>
<td>5,958</td>
<td>1,331</td>
<td>7,289</td>
<td>9,316</td>
<td>10,647.0</td>
</tr>
<tr>
<td>2004</td>
<td>3,647</td>
<td>8,041</td>
<td>7,179</td>
<td>1,761</td>
<td>8,940</td>
<td>10,826</td>
<td>12,586.9</td>
</tr>
<tr>
<td>2005</td>
<td>3,187</td>
<td>7,026</td>
<td>8,225</td>
<td>1,915</td>
<td>10,140</td>
<td>11,412</td>
<td>13,327.3</td>
</tr>
<tr>
<td>2006</td>
<td>2,926</td>
<td>6,450</td>
<td>7,663</td>
<td>1,860</td>
<td>9,523</td>
<td>10,589</td>
<td>12,449.0</td>
</tr>
<tr>
<td>2007</td>
<td>3,267</td>
<td>7,182</td>
<td>9,608</td>
<td>2,653</td>
<td>12,261</td>
<td>12,874</td>
<td>15,527.3</td>
</tr>
<tr>
<td>2008</td>
<td>2,469</td>
<td>5,655</td>
<td>8,573</td>
<td>2,443</td>
<td>11,016</td>
<td>11,042</td>
<td>13,485.3</td>
</tr>
<tr>
<td>2009</td>
<td>3,151</td>
<td>6,990</td>
<td>6,161</td>
<td>960</td>
<td>7,121</td>
<td>9,312</td>
<td>10,272.7</td>
</tr>
</tbody>
</table>
Table 2. Bluefish biological reference points and current status.

<table>
<thead>
<tr>
<th>Assessment year</th>
<th>Catch year</th>
<th>Fmult</th>
<th>Fmsy</th>
<th>1/2 Bmsy</th>
<th>Bmsy</th>
<th>2009 Biomass</th>
<th>2009 reported catch</th>
<th>MSY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>2009</td>
<td>0.18</td>
<td>0.19</td>
<td>73,526</td>
<td>147,052</td>
<td>125,990</td>
<td>10,273</td>
<td>15,644</td>
</tr>
</tbody>
</table>

Table 3. Fishing mortality at age from 2009 ASAP model.

<table>
<thead>
<tr>
<th>AGE</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>0.09</td>
<td>0.25</td>
<td>0.22</td>
<td>0.12</td>
<td>0.09</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>1983</td>
<td>0.11</td>
<td>0.28</td>
<td>0.25</td>
<td>0.13</td>
<td>0.10</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>1984</td>
<td>0.10</td>
<td>0.25</td>
<td>0.23</td>
<td>0.12</td>
<td>0.09</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>1985</td>
<td>0.09</td>
<td>0.24</td>
<td>0.22</td>
<td>0.12</td>
<td>0.08</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>1986</td>
<td>0.15</td>
<td>0.40</td>
<td>0.36</td>
<td>0.19</td>
<td>0.14</td>
<td>0.27</td>
<td>0.36</td>
</tr>
<tr>
<td>1987</td>
<td>0.16</td>
<td>0.42</td>
<td>0.38</td>
<td>0.20</td>
<td>0.15</td>
<td>0.29</td>
<td>0.38</td>
</tr>
<tr>
<td>1988</td>
<td>0.14</td>
<td>0.38</td>
<td>0.34</td>
<td>0.18</td>
<td>0.13</td>
<td>0.26</td>
<td>0.33</td>
</tr>
<tr>
<td>1989</td>
<td>0.12</td>
<td>0.31</td>
<td>0.28</td>
<td>0.15</td>
<td>0.11</td>
<td>0.21</td>
<td>0.28</td>
</tr>
<tr>
<td>1990</td>
<td>0.11</td>
<td>0.29</td>
<td>0.26</td>
<td>0.14</td>
<td>0.10</td>
<td>0.20</td>
<td>0.26</td>
</tr>
<tr>
<td>1991</td>
<td>0.14</td>
<td>0.37</td>
<td>0.34</td>
<td>0.18</td>
<td>0.13</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>1992</td>
<td>0.12</td>
<td>0.32</td>
<td>0.28</td>
<td>0.15</td>
<td>0.11</td>
<td>0.21</td>
<td>0.28</td>
</tr>
<tr>
<td>1993</td>
<td>0.12</td>
<td>0.31</td>
<td>0.27</td>
<td>0.15</td>
<td>0.11</td>
<td>0.21</td>
<td>0.27</td>
</tr>
<tr>
<td>1994</td>
<td>0.11</td>
<td>0.28</td>
<td>0.25</td>
<td>0.14</td>
<td>0.10</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>1995</td>
<td>0.09</td>
<td>0.30</td>
<td>0.33</td>
<td>0.19</td>
<td>0.12</td>
<td>0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>1996</td>
<td>0.09</td>
<td>0.28</td>
<td>0.30</td>
<td>0.18</td>
<td>0.11</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>1997</td>
<td>0.10</td>
<td>0.31</td>
<td>0.34</td>
<td>0.20</td>
<td>0.13</td>
<td>0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>1998</td>
<td>0.08</td>
<td>0.25</td>
<td>0.28</td>
<td>0.16</td>
<td>0.10</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td>1999</td>
<td>0.06</td>
<td>0.20</td>
<td>0.22</td>
<td>0.13</td>
<td>0.08</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>2000</td>
<td>0.07</td>
<td>0.21</td>
<td>0.23</td>
<td>0.13</td>
<td>0.09</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>2001</td>
<td>0.08</td>
<td>0.24</td>
<td>0.27</td>
<td>0.15</td>
<td>0.10</td>
<td>0.15</td>
<td>0.09</td>
</tr>
<tr>
<td>2002</td>
<td>0.06</td>
<td>0.19</td>
<td>0.21</td>
<td>0.12</td>
<td>0.08</td>
<td>0.12</td>
<td>0.07</td>
</tr>
<tr>
<td>2003</td>
<td>0.07</td>
<td>0.21</td>
<td>0.23</td>
<td>0.13</td>
<td>0.08</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>2004</td>
<td>0.07</td>
<td>0.22</td>
<td>0.24</td>
<td>0.14</td>
<td>0.09</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>2005</td>
<td>0.07</td>
<td>0.24</td>
<td>0.26</td>
<td>0.15</td>
<td>0.10</td>
<td>0.15</td>
<td>0.09</td>
</tr>
<tr>
<td>2006</td>
<td>0.07</td>
<td>0.22</td>
<td>0.24</td>
<td>0.14</td>
<td>0.09</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>2007</td>
<td>0.08</td>
<td>0.26</td>
<td>0.29</td>
<td>0.16</td>
<td>0.11</td>
<td>0.16</td>
<td>0.10</td>
</tr>
<tr>
<td>2008</td>
<td>0.07</td>
<td>0.21</td>
<td>0.23</td>
<td>0.14</td>
<td>0.09</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>2009</td>
<td>0.05</td>
<td>0.16</td>
<td>0.18</td>
<td>0.10</td>
<td>0.06</td>
<td>0.10</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Table 4. Population abundance (000s) at age from updated ASAP model.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>172,815</td>
<td>57,024</td>
<td>13,671</td>
<td>7,132</td>
<td>6,808</td>
<td>12,416</td>
<td>29,841</td>
</tr>
<tr>
<td>1983</td>
<td>163,778</td>
<td>44,258</td>
<td>29,419</td>
<td>8,977</td>
<td>5,188</td>
<td>5,117</td>
<td>28,280</td>
</tr>
<tr>
<td>1984</td>
<td>161,246</td>
<td>51,783</td>
<td>26,326</td>
<td>18,729</td>
<td>6,423</td>
<td>3,853</td>
<td>21,546</td>
</tr>
<tr>
<td>1985</td>
<td>142,094</td>
<td>30,479</td>
<td>20,733</td>
<td>17,182</td>
<td>13,581</td>
<td>4,816</td>
<td>16,775</td>
</tr>
<tr>
<td>1986</td>
<td>120,359</td>
<td>22,054</td>
<td>22,758</td>
<td>24,744</td>
<td>13,645</td>
<td>12,515</td>
<td>10,216</td>
</tr>
<tr>
<td>1987</td>
<td>90,512</td>
<td>15,696</td>
<td>15,498</td>
<td>12,457</td>
<td>14,106</td>
<td>9,203</td>
<td>8,904</td>
</tr>
<tr>
<td>1988</td>
<td>77,508</td>
<td>21,688</td>
<td>10,938</td>
<td>8,298</td>
<td>6,962</td>
<td>9,413</td>
<td>6,498</td>
</tr>
<tr>
<td>1989</td>
<td>92,628</td>
<td>42,597</td>
<td>15,387</td>
<td>6,139</td>
<td>4,838</td>
<td>4,752</td>
<td>6,756</td>
</tr>
<tr>
<td>1990</td>
<td>83,378</td>
<td>12,939</td>
<td>15,010</td>
<td>18,907</td>
<td>5,792</td>
<td>2,696</td>
<td>2,518</td>
</tr>
<tr>
<td>1991</td>
<td>79,797</td>
<td>12,224</td>
<td>17,715</td>
<td>8,452</td>
<td>11,056</td>
<td>3,960</td>
<td>1,937</td>
</tr>
<tr>
<td>1992</td>
<td>62,788</td>
<td>14,560</td>
<td>8,876</td>
<td>10,570</td>
<td>5,206</td>
<td>3,407</td>
<td>2,302</td>
</tr>
<tr>
<td>1993</td>
<td>55,757</td>
<td>19,992</td>
<td>10,617</td>
<td>5,356</td>
<td>6,577</td>
<td>3,680</td>
<td>5,721</td>
</tr>
<tr>
<td>1994</td>
<td>57,557</td>
<td>18,527</td>
<td>14,715</td>
<td>6,565</td>
<td>3,407</td>
<td>4,704</td>
<td>2,732</td>
</tr>
<tr>
<td>1995</td>
<td>58,112</td>
<td>19,134</td>
<td>13,795</td>
<td>8,906</td>
<td>3,851</td>
<td>2,302</td>
<td>3,405</td>
</tr>
<tr>
<td>1996</td>
<td>58,668</td>
<td>16,745</td>
<td>14,367</td>
<td>8,576</td>
<td>5,381</td>
<td>2,647</td>
<td>1,684</td>
</tr>
<tr>
<td>1997</td>
<td>57,087</td>
<td>20,370</td>
<td>12,448</td>
<td>8,652</td>
<td>5,003</td>
<td>3,624</td>
<td>1,912</td>
</tr>
<tr>
<td>1998</td>
<td>58,722</td>
<td>24,495</td>
<td>15,413</td>
<td>7,930</td>
<td>5,370</td>
<td>3,492</td>
<td>2,678</td>
</tr>
<tr>
<td>1999</td>
<td>65,694</td>
<td>17,487</td>
<td>18,845</td>
<td>10,352</td>
<td>5,218</td>
<td>3,876</td>
<td>2,637</td>
</tr>
<tr>
<td>2000</td>
<td>65,135</td>
<td>28,697</td>
<td>13,394</td>
<td>12,480</td>
<td>6,707</td>
<td>3,733</td>
<td>2,911</td>
</tr>
<tr>
<td>2001</td>
<td>74,870</td>
<td>20,921</td>
<td>21,784</td>
<td>8,621</td>
<td>7,835</td>
<td>4,712</td>
<td>2,771</td>
</tr>
<tr>
<td>2002</td>
<td>73,867</td>
<td>23,444</td>
<td>16,151</td>
<td>14,791</td>
<td>5,741</td>
<td>5,695</td>
<td>3,574</td>
</tr>
<tr>
<td>2003</td>
<td>76,905</td>
<td>17,958</td>
<td>17,979</td>
<td>10,738</td>
<td>9,625</td>
<td>4,117</td>
<td>4,283</td>
</tr>
<tr>
<td>2004</td>
<td>72,932</td>
<td>24,780</td>
<td>13,720</td>
<td>11,811</td>
<td>6,895</td>
<td>6,850</td>
<td>3,082</td>
</tr>
<tr>
<td>2005</td>
<td>76,370</td>
<td>32,288</td>
<td>18,823</td>
<td>8,849</td>
<td>7,432</td>
<td>4,851</td>
<td>5,089</td>
</tr>
<tr>
<td>2006</td>
<td>86,384</td>
<td>26,953</td>
<td>24,677</td>
<td>12,379</td>
<td>5,689</td>
<td>5,293</td>
<td>3,632</td>
</tr>
<tr>
<td>2007</td>
<td>89,052</td>
<td>23,493</td>
<td>20,344</td>
<td>15,595</td>
<td>7,617</td>
<td>3,951</td>
<td>3,900</td>
</tr>
<tr>
<td>2008</td>
<td>85,134</td>
<td>10,790</td>
<td>17,991</td>
<td>13,464</td>
<td>10,097</td>
<td>5,447</td>
<td>2,966</td>
</tr>
<tr>
<td>2009</td>
<td>71,253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Population biomass (MT) at age from updated ASAP model.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6+</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>7,983</td>
<td>22,503</td>
<td>20,780</td>
<td>14,620</td>
<td>21,786</td>
<td>52,545</td>
<td>147,950</td>
<td>288,167</td>
</tr>
<tr>
<td>1983</td>
<td>4,426</td>
<td>17,866</td>
<td>29,125</td>
<td>19,301</td>
<td>16,396</td>
<td>22,602</td>
<td>157,718</td>
<td>267,433</td>
</tr>
<tr>
<td>1984</td>
<td>5,178</td>
<td>13,360</td>
<td>24,483</td>
<td>34,273</td>
<td>29,111</td>
<td>19,222</td>
<td>121,734</td>
<td>234,994</td>
</tr>
<tr>
<td>1985</td>
<td>3,048</td>
<td>15,411</td>
<td>20,111</td>
<td>33,161</td>
<td>38,297</td>
<td>19,222</td>
<td>84,765</td>
<td>214,015</td>
</tr>
<tr>
<td>1986</td>
<td>2,646</td>
<td>11,151</td>
<td>29,693</td>
<td>31,657</td>
<td>39,423</td>
<td>43,959</td>
<td>69,943</td>
<td>228,472</td>
</tr>
<tr>
<td>1987</td>
<td>1,883</td>
<td>4,650</td>
<td>6,507</td>
<td>10,257</td>
<td>14,273</td>
<td>26,734</td>
<td>23,158</td>
<td>143,905</td>
</tr>
<tr>
<td>1988</td>
<td>5,538</td>
<td>4,616</td>
<td>13,235</td>
<td>10,020</td>
<td>7,575</td>
<td>9,978</td>
<td>49,335</td>
<td>113,849</td>
</tr>
<tr>
<td>1989</td>
<td>4,303</td>
<td>15,483</td>
<td>8,104</td>
<td>6,560</td>
<td>11,037</td>
<td>14,570</td>
<td>53,791</td>
<td>98,587</td>
</tr>
<tr>
<td>1990</td>
<td>3,491</td>
<td>4,953</td>
<td>13,235</td>
<td>10,020</td>
<td>7,575</td>
<td>9,978</td>
<td>49,335</td>
<td>90,054</td>
</tr>
<tr>
<td>1991</td>
<td>1,956</td>
<td>6,909</td>
<td>8,728</td>
<td>6,663</td>
<td>13,188</td>
<td>34,156</td>
<td>79,248</td>
<td>81,486</td>
</tr>
<tr>
<td>1992</td>
<td>3,253</td>
<td>6,070</td>
<td>8,728</td>
<td>6,663</td>
<td>13,188</td>
<td>34,156</td>
<td>79,248</td>
<td>81,486</td>
</tr>
<tr>
<td>1993</td>
<td>2,177</td>
<td>7,327</td>
<td>8,133</td>
<td>11,756</td>
<td>12,321</td>
<td>7,686</td>
<td>36,120</td>
<td>87,355</td>
</tr>
<tr>
<td>1994</td>
<td>2,399</td>
<td>4,247</td>
<td>4,820</td>
<td>12,364</td>
<td>11,187</td>
<td>21,494</td>
<td>22,979</td>
<td>79,490</td>
</tr>
<tr>
<td>1995</td>
<td>3,150</td>
<td>6,475</td>
<td>6,434</td>
<td>5,894</td>
<td>13,407</td>
<td>11,087</td>
<td>35,040</td>
<td>81,486</td>
</tr>
<tr>
<td>1996</td>
<td>3,253</td>
<td>6,070</td>
<td>8,728</td>
<td>6,663</td>
<td>13,188</td>
<td>34,156</td>
<td>79,248</td>
<td>81,486</td>
</tr>
<tr>
<td>1997</td>
<td>2,177</td>
<td>7,327</td>
<td>8,133</td>
<td>11,756</td>
<td>12,321</td>
<td>7,686</td>
<td>36,120</td>
<td>87,355</td>
</tr>
<tr>
<td>1998</td>
<td>3,870</td>
<td>7,469</td>
<td>8,133</td>
<td>11,756</td>
<td>12,321</td>
<td>7,686</td>
<td>36,120</td>
<td>87,355</td>
</tr>
<tr>
<td>1999</td>
<td>3,429</td>
<td>8,169</td>
<td>7,295</td>
<td>11,223</td>
<td>11,976</td>
<td>10,981</td>
<td>32,656</td>
<td>85,731</td>
</tr>
<tr>
<td>2000</td>
<td>2,973</td>
<td>8,669</td>
<td>10,352</td>
<td>14,193</td>
<td>13,066</td>
<td>9,520</td>
<td>37,897</td>
<td>97,210</td>
</tr>
<tr>
<td>2001</td>
<td>4,592</td>
<td>5,893</td>
<td>11,357</td>
<td>16,901</td>
<td>14,446</td>
<td>11,294</td>
<td>37,736</td>
<td>102,219</td>
</tr>
<tr>
<td>2002</td>
<td>3,557</td>
<td>11,981</td>
<td>10,086</td>
<td>17,942</td>
<td>13,664</td>
<td>10,473</td>
<td>33,661</td>
<td>101,364</td>
</tr>
<tr>
<td>2003</td>
<td>2,813</td>
<td>9,044</td>
<td>14,791</td>
<td>12,458</td>
<td>15,034</td>
<td>13,082</td>
<td>30,867</td>
<td>98,089</td>
</tr>
<tr>
<td>2004</td>
<td>1,437</td>
<td>8,091</td>
<td>14,174</td>
<td>20,597</td>
<td>13,464</td>
<td>16,062</td>
<td>38,194</td>
<td>112,018</td>
</tr>
<tr>
<td>2005</td>
<td>1,982</td>
<td>6,174</td>
<td>15,590</td>
<td>14,756</td>
<td>22,400</td>
<td>11,556</td>
<td>42,836</td>
<td>115,295</td>
</tr>
<tr>
<td>2006</td>
<td>2,583</td>
<td>8,471</td>
<td>11,680</td>
<td>15,904</td>
<td>15,861</td>
<td>19,083</td>
<td>42,002</td>
<td>115,584</td>
</tr>
<tr>
<td>2007</td>
<td>2,156</td>
<td>11,105</td>
<td>16,341</td>
<td>12,175</td>
<td>17,309</td>
<td>13,620</td>
<td>48,384</td>
<td>121,089</td>
</tr>
<tr>
<td>2008</td>
<td>1,879</td>
<td>9,155</td>
<td>20,586</td>
<td>16,299</td>
<td>12,918</td>
<td>14,624</td>
<td>47,497</td>
<td>122,958</td>
</tr>
<tr>
<td>2009</td>
<td>863</td>
<td>8,096</td>
<td>17,772</td>
<td>21,607</td>
<td>17,811</td>
<td>11,122</td>
<td>48,720</td>
<td>125,990</td>
</tr>
</tbody>
</table>
Table 6. Catch at age (000s) for bluefish, Maine to Florida as used in the ASAP model.

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6+</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>11164.1</td>
<td>9747.9</td>
<td>2850.8</td>
<td>2439.3</td>
<td>795.3</td>
<td>1213.5</td>
<td>3736.3</td>
<td>31,947</td>
</tr>
<tr>
<td>1983</td>
<td>4778.4</td>
<td>7666.7</td>
<td>8686.1</td>
<td>3022.0</td>
<td>970.6</td>
<td>1325.3</td>
<td>4778.4</td>
<td>31,228</td>
</tr>
<tr>
<td>1984</td>
<td>7121.3</td>
<td>6807.3</td>
<td>6718.5</td>
<td>2039.9</td>
<td>895.1</td>
<td>744.7</td>
<td>3176.7</td>
<td>27,503</td>
</tr>
<tr>
<td>1985</td>
<td>4676.7</td>
<td>6468.8</td>
<td>5773.3</td>
<td>2925.5</td>
<td>1328.5</td>
<td>520.0</td>
<td>2377.1</td>
<td>24,070</td>
</tr>
<tr>
<td>1986</td>
<td>5169.3</td>
<td>8070.7</td>
<td>8728.0</td>
<td>2801.7</td>
<td>1056.4</td>
<td>1703.1</td>
<td>4465.0</td>
<td>31,994</td>
</tr>
<tr>
<td>1987</td>
<td>3127.1</td>
<td>5419.5</td>
<td>5177.8</td>
<td>5757.4</td>
<td>2009.3</td>
<td>1083.0</td>
<td>3948.2</td>
<td>26,522</td>
</tr>
<tr>
<td>1988</td>
<td>1709.8</td>
<td>2083.6</td>
<td>2524.0</td>
<td>1588.6</td>
<td>1984.1</td>
<td>1598.6</td>
<td>2740.4</td>
<td>14,229</td>
</tr>
<tr>
<td>1989</td>
<td>3473.6</td>
<td>5672.6</td>
<td>3221.1</td>
<td>992.1</td>
<td>395.9</td>
<td>1168.5</td>
<td>2409.8</td>
<td>17,334</td>
</tr>
<tr>
<td>1990</td>
<td>2726.7</td>
<td>7185.8</td>
<td>1840.7</td>
<td>687.2</td>
<td>381.8</td>
<td>431.6</td>
<td>2478.6</td>
<td>15,732</td>
</tr>
<tr>
<td>1991</td>
<td>3694.6</td>
<td>5292.6</td>
<td>7391.9</td>
<td>1590.7</td>
<td>310.9</td>
<td>224.7</td>
<td>2136.5</td>
<td>20,642</td>
</tr>
<tr>
<td>1992</td>
<td>2131.3</td>
<td>9633.3</td>
<td>1709.8</td>
<td>2352.9</td>
<td>583.4</td>
<td>479.2</td>
<td>967.2</td>
<td>17,857</td>
</tr>
<tr>
<td>1993</td>
<td>1194.1</td>
<td>2081.6</td>
<td>1566.9</td>
<td>593.0</td>
<td>1040.8</td>
<td>669.0</td>
<td>1178.9</td>
<td>8,324</td>
</tr>
<tr>
<td>1994</td>
<td>1970.8</td>
<td>3144.3</td>
<td>1313.3</td>
<td>368.1</td>
<td>296.7</td>
<td>849.5</td>
<td>1073.1</td>
<td>9,016</td>
</tr>
<tr>
<td>1995</td>
<td>1822.8</td>
<td>3371.4</td>
<td>735.7</td>
<td>137.7</td>
<td>214.1</td>
<td>695.7</td>
<td>1057.8</td>
<td>8,035</td>
</tr>
<tr>
<td>1996</td>
<td>1701.5</td>
<td>2145.1</td>
<td>631.5</td>
<td>202.2</td>
<td>207.2</td>
<td>545.0</td>
<td>1411.8</td>
<td>6,844</td>
</tr>
<tr>
<td>1997</td>
<td>1634.1</td>
<td>4299.3</td>
<td>1496.2</td>
<td>510.5</td>
<td>196.6</td>
<td>93.4</td>
<td>1212.3</td>
<td>9,443</td>
</tr>
<tr>
<td>1998</td>
<td>683.5</td>
<td>2754.1</td>
<td>2786.1</td>
<td>861.3</td>
<td>261.0</td>
<td>308.0</td>
<td>458.8</td>
<td>8,113</td>
</tr>
<tr>
<td>1999</td>
<td>1638.5</td>
<td>1946.1</td>
<td>2096.7</td>
<td>572.8</td>
<td>174.7</td>
<td>352.5</td>
<td>482.8</td>
<td>7,264</td>
</tr>
<tr>
<td>2000</td>
<td>667.4</td>
<td>4396.5</td>
<td>2693.3</td>
<td>717.7</td>
<td>96.9</td>
<td>536.0</td>
<td>155.9</td>
<td>9,264</td>
</tr>
<tr>
<td>2001</td>
<td>1414.3</td>
<td>4466.7</td>
<td>3466.2</td>
<td>1151.9</td>
<td>198.3</td>
<td>608.0</td>
<td>243.5</td>
<td>11,549</td>
</tr>
<tr>
<td>2002</td>
<td>587.1</td>
<td>5145.6</td>
<td>1661.6</td>
<td>542.6</td>
<td>340.3</td>
<td>236.8</td>
<td>415.9</td>
<td>8,930</td>
</tr>
<tr>
<td>2003</td>
<td>819.3</td>
<td>2646.0</td>
<td>3975.0</td>
<td>774.6</td>
<td>377.9</td>
<td>319.8</td>
<td>644.0</td>
<td>9,557</td>
</tr>
<tr>
<td>2004</td>
<td>434.4</td>
<td>5270.8</td>
<td>2289.6</td>
<td>1265.2</td>
<td>435.4</td>
<td>473.5</td>
<td>662.8</td>
<td>10,832</td>
</tr>
<tr>
<td>2005</td>
<td>3262.8</td>
<td>2560.5</td>
<td>4179.2</td>
<td>1389.9</td>
<td>411.9</td>
<td>585.4</td>
<td>494.7</td>
<td>12,884</td>
</tr>
<tr>
<td>2006</td>
<td>2718.6</td>
<td>3489.6</td>
<td>2975.5</td>
<td>1090.2</td>
<td>301.9</td>
<td>283.5</td>
<td>662.6</td>
<td>11,522</td>
</tr>
<tr>
<td>2007</td>
<td>695.0</td>
<td>3065.0</td>
<td>5390.0</td>
<td>1548.2</td>
<td>852.7</td>
<td>582.7</td>
<td>1375.2</td>
<td>13,509</td>
</tr>
<tr>
<td>2008</td>
<td>893.1</td>
<td>3725.3</td>
<td>4011.6</td>
<td>463.1</td>
<td>615.1</td>
<td>239.1</td>
<td>396.3</td>
<td>10,344</td>
</tr>
<tr>
<td>2009</td>
<td>144.5</td>
<td>3083.9</td>
<td>2857.8</td>
<td>482.1</td>
<td>354.2</td>
<td>236.5</td>
<td>599.9</td>
<td>7,759</td>
</tr>
</tbody>
</table>
Table 7. Projections of abundance, biomass, SSB and yield for 2010-2012 using AGEPRO model. Assumed weight at age equivalent to 2009. Yield includes recreational discards with 15% mortality.

<table>
<thead>
<tr>
<th></th>
<th>1-Jan Mean</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abundance</td>
<td>Biomass</td>
<td>SSB</td>
<td>Yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(000s)</td>
<td>(000s mt)</td>
<td>(000s mt)</td>
<td>mt</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.16</td>
<td>74,663</td>
<td>111.7</td>
<td>103.9</td>
<td>9,183</td>
</tr>
<tr>
<td>2011</td>
<td>0.16</td>
<td>78,265</td>
<td>114.2</td>
<td>105.2</td>
<td>9,057</td>
</tr>
<tr>
<td>2012</td>
<td>0.16</td>
<td>80,827</td>
<td>119.3</td>
<td>107.7</td>
<td>9,882</td>
</tr>
<tr>
<td></td>
<td>1-Jan Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abundance</td>
<td>Biomass</td>
<td>SSB</td>
<td>Yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(000s)</td>
<td>(000s mt)</td>
<td>(000s mt)</td>
<td>mt</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.17</td>
<td>74,663</td>
<td>110.6</td>
<td>103.6</td>
<td>9,729</td>
</tr>
<tr>
<td>2011</td>
<td>0.17</td>
<td>77,970</td>
<td>112.7</td>
<td>104.4</td>
<td>9,543</td>
</tr>
<tr>
<td>2012</td>
<td>0.17</td>
<td>80,293</td>
<td>117.1</td>
<td>106.3</td>
<td>10,362</td>
</tr>
<tr>
<td></td>
<td>status quo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abundance</td>
<td>Biomass</td>
<td>SSB</td>
<td>Yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(000s)</td>
<td>(000s mt)</td>
<td>(000s mt)</td>
<td>mt</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.18</td>
<td>74,663</td>
<td>111.1</td>
<td>103.3</td>
<td>10,272</td>
</tr>
<tr>
<td>2011</td>
<td>0.18</td>
<td>77,677</td>
<td>112.5</td>
<td>103.5</td>
<td>10,021</td>
</tr>
<tr>
<td>2012</td>
<td>0.18</td>
<td>79,766</td>
<td>116.3</td>
<td>104.9</td>
<td>10,828</td>
</tr>
<tr>
<td></td>
<td>Fmsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abundance</td>
<td>Biomass</td>
<td>SSB</td>
<td>Yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(000s)</td>
<td>(000s mt)</td>
<td>(000s mt)</td>
<td>mt</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.19</td>
<td>75,585</td>
<td>110.9</td>
<td>103.1</td>
<td>10,811</td>
</tr>
<tr>
<td>2011</td>
<td>0.19</td>
<td>77,385</td>
<td>111.6</td>
<td>102.7</td>
<td>10,490</td>
</tr>
<tr>
<td>2012</td>
<td>0.19</td>
<td>79,245</td>
<td>114.8</td>
<td>103.5</td>
<td>11,280</td>
</tr>
<tr>
<td></td>
<td>F0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abundance</td>
<td>Biomass</td>
<td>SSB</td>
<td>Yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(000s)</td>
<td>(000s mt)</td>
<td>(000s mt)</td>
<td>mt</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>0.26</td>
<td>74,663</td>
<td>109.0</td>
<td>101.3</td>
<td>14,503</td>
</tr>
<tr>
<td>2011</td>
<td>0.26</td>
<td>75,402</td>
<td>105.8</td>
<td>97.3</td>
<td>13,549</td>
</tr>
<tr>
<td>2012</td>
<td>0.26</td>
<td>75,759</td>
<td>105.1</td>
<td>94.4</td>
<td>14,088</td>
</tr>
</tbody>
</table>